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Preface
This volume aims to present calculus in an intuitive yet intellectually satisfying way and to il-
lustrate the many applications of calculus to the pure sciences and management sciences. The
only co-requisite for mastering the material in the book are SMA 101: Basic Mathematics and an
interest in mathematics and a willingness occasionally to suspend disbelief when a familiar idea
occurs in an unfamiliar guise. But only an exceptional student would profit from reading the book
unless he/she has previously acquired a fair working knowledge of elementary set theory, algebra
and geometry. This book is a development of various courses designed for first year students of
science at the University of Nairobi, whose preparation has been some rudimentary knowledge of
set theory, algebra and geometry.

What is Calculus?
Algebra and geometry are useful tools for describing relationships between static quantities. How-
ever, they do not involve concepts appropriate for describing how quantity changes. For this we
need new mathematical operations that transcend or go beyond algebra and geometry. We require
operations that measure the way related quantities change.
Calculus provides the tools for describing motion quantitatively. It introduces two new operations
called differentiation and integration which are inverses of each other: what differentiation does,
integration undoes. The process of differentiation is closely tied to the geometric problem of find-
ing tangent lines. Integration is related to the geometric problem of finding areas of regions with
curved boundaries. These two concepts defined in terms of the concept of a limit. This will be
developed in Chapter 1, and marks the beginning of calculus.

Origins of Calculus
Calculus was invented independently by two 17th-century mathematicians: Isaac Newton and
Gottfried Wilhelm Leibniz.

Objectives

At the end of this course unit the learner will be able to:

� Understand a the concept of a limit of a function and how to compute the same.
� Appreciate the concept of a continuous function.
� Appreciate and apply the concepts of derivatives and antiderivatives.
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Chapter 1

PRELIMINARIES FOR CALCULUS

Neglect of mathematics works injury to all knowledge, since he who is ignorant of it
cannot know the other sciences or the things of this world. And what is worse, men
who are thus ignorant are unable to perceive their own ignorance and so do not seek
a remedy. —Roger Bacon

Functions are basic to the study of mathematics and many other sciences and are found in everyday
life situations.
To address functions adequately we need to lay a foundation. We start by introducing the notion
of sets.

1.1 Elementary Set Theory

Definition 1.1.1. A set is any well-defined collection, aggregate, class or conglomerate of objects.

These objects (which may be cities, years, numbers, letters of the alphabet, or anything else) are
called elements of the set, and are often said to be members of the set.
A set is often specified by⊙

listing its elements inside a pair of braces or curly brackets or parentheses.⊙
means of a property of its elements.

Example 1.1.2. The set whose elements are the first six letters of the alphabet is written

{a, b, c, d, e, f}

Example 1.1.3. The set whose elements are the even integers between 1 and 11 is written

{2, 4, 6, 8, 10}

We can also specify a set by giving a description of its elements (without actually listing the
elements).

Example 1.1.4. The set {a, b, c, d, e, f} can also be written

{The first six letters of the alphabet}

1



2 CHAPTER 1. PRELIMINARIES FOR CALCULUS

1.1.1 Notation and Terminology

For convenience, we usually denote sets by capital letters of the alphabet A,B,C and so on. We
use lowercase letters of the alphabet to represent elements of a set. For a set A, we write x ∈ A
if x is a member of A or belongs to A. We write x ̸∈ A to mean that x is not a member of A or
does not belong to A.

Example 1.1.5. If E denotes the set of even integers, then 4 ∈ E but 7 ̸∈ E.

Definition 1.1.6. An empty set is a set with no elements.

An empty set is usually denoted by ∅. It is a set that arises in a variety of disguises.

Definition 1.1.7. Let A and B be two sets. If every element of A is an element of B, we say that
A is a subset of B, and we write A ⊆ B. We also say that A is contained in B.

Definition 1.1.8. If A ⊆ B and B ⊆ A, then we say that A and B are equal, and write A = B.

Definition 1.1.9. If A ⊆ B and A ̸= B, then we say that A is a proper subset of B are equal,
and write A = B, or A is properly contained in B, and write A ⊂ B.

Definition 1.1.10. (Cardinality of a set). The number of elements in a set A is called the
cardinality of A, and is denoted n(A) or |A|.

Definition 1.1.11. (Universal set). A universal set denoted by U is a set which contains all
elements under consideration. That is, it contains all other sets under consideration. It is also
called the universe of discourse or simply universe.

1. Complement of a set
Let U be the universal set and A be any set. The complement of A, written A{ is defined as

A{ =
{
x ∈ U : x ̸∈ A

}
Example 1.1.12. Let the universal set be U = {0, 1, 2, 3, 5, 6} and A = {3, 5}. Then A{ =
{0, 1, 2, 6}.

2. Union of sets
Let A and B be sets. The union of A and B, denoted by A ∪B is

A ∪B =
{
x : x ∈ A or x ∈ B or both

}
Example 1.1.13. If A = {3, 5, 7} and B = {x, y, t}, them A ∪B = {3, 5, 7, x, y, t}.

3. Intersection of sets
Let A and B be sets. The intersection of A and B, denoted by A ∩B is

A ∩B =
{
x : x ∈ A and x ∈ B

}
Example 1.1.14. If A = {1, 3, T om,Mary} and B = {3, x, y, t,Mary}, them A∩B = {3,Mary}.
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4. Set Difference
Let A and B be sets. The set difference or relative complement of A with respect to B, denoted
by A−B is defined as

A−B =
{
x : x ∈ A and x ̸∈ B

}
Example 1.1.15. If A = {New Y ork, Cairo,Mumbai, Seoul, Beijing,Moscow, London} and
B = {Nairobi,Kigali, Pretoria, beijing,Harare, Paris, London}. Then

A−B = {New Y ork, Cairo,Mumbai, Seoul,Moscow}

and
B − A = {Nairobi,Kigali, Pretoria,Harare, Paris}

5. Cartesian Product of Sets
Let A and B be sets. The Cartesian product of A and B, denoted by A×B is defined as

A×B =
{
(a, b) : a ∈ A and b ∈ B

}
Example 1.1.16. If A = {0, 1, 2} and B = {a, b}, them

A×B =
{
(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)

}
A× A =

{
(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

}
Example 1.1.17. Let R be the set of real numbers. Then the Cartesian product of

R× R =
{
(x, y) : x, y ∈ R

}
This is also denoted as R2 and read as ”R two”. This is the two-dimensional Cartesian plane or
simply the xy-plane.
The Cartesian product

R× R× R =
{
(x, y, z) : x, y, z ∈ R

}
This is also denoted as R3 and read as ”R three”, and is the three-dimensional Euclidean space.

1.1.2 Some Special Number Sets

There are certain sets of numbers that appear frequently in mathematics and in other sciences.
1. The Natural Numbers, N

N = {1, 2, 3, ...}
2. The Whole Numbers, W

W = {0, 1, 2, 3, ...}
3. The set of Integers, Z

Z = {...,−4,−3,−2,−1, 0, 1, 2, 3, 4, ...}

4. The Rational Numbers, QindexRational!numbers

Q = {a
b
: a, b ∈ Z, b ̸= 0, gcd(a, b) = 1}
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1.1.3 Fundamental Operations on Sets

5. The Irrational Numbers, Q{indexIrrational!numbers

Q{ = {t : t ̸∈ Q}

Note that Q ∩Q{ = ∅.
6. The Real Numbers, R
indexReal!numbers A real number is a number which is either rational or irrational. That is
R = Q ∪Q{. The set of real numbers is also called the real number line.
7. Intervals in R. Let a, b, x ∈ R. Then
(a, b) = {x ∈ R : a < x < b} is called the open interval between a and b.
[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : ax ≤ b} are called the half-open or half-closed
intervals between a and b.
[a, b] = {x ∈ R : a ≤ x ≤ b} is called the closed interval between a and b.
(a,∞) = {x ∈ R : x > a}
[a,∞) = {x ∈ R : x ≥ a}
(−∞, a) = {x ∈ R : x < a}
(−∞, a] = {x ∈ R : x ≤ a}
(−∞,∞) = {x ∈ R : −∞ < x < ∞} = R



Chapter 2

LIMITS AND CONTINUITY OF
FUNCTIONS

2.1 Functions and their Graphs

Definition 2.1.1. Let X and Y be two sets. By a function f from X to Y , we mean a rule or
relation which assigns to each x in X a unique element f(x) in Y .

We often express the fact that f is a function from X to Y by writing

f : X −→ Y.

The set X is called the domain of f , and denoted by Dom(f). The set of values y = f(x) is
called the range of f , and is denoted by Ran(f). Equivalently, Ran(f) = {f(x) : x ∈ Dom(f)}
and is always a subset of Y might not equal Y . The set Y is called the co-domain of f . When
we describe a function by writing a formula y = f(x), we call x the independent variable and y
the dependent variable. The set of all values for which f(x) is defined is the domain of f and the
values y = f(x) where x ∈ Dom(f) is the range of f . The graph of the function f is the set of all
points in the plane of the form (x, f(x)), where x ∈ Dom(f).

Definition 2.1.2. We say that a function f : X −→ Y is one-to-one or injective if, for every
pair x1, x2 ∈ X, x1 ̸= x2, implies that f(x1) ̸= f(x2) (or equivalently, if f(x1) = f(x2), then
x1 = x2).

Definition 2.1.3. A function f : X −→ Y is onto or surjective if, every y ∈ Y is of the form
f(x) for some x ∈ X. Equivalently, f is onto if Ran(f) = Y .

Definition 2.1.4. A function f : X −→ Y is a bijection if it is one-to-one and onto.

Example 2.1.5. The function f : R −→ R given by f(x) = 2x is one-to-one and onto, and hence
it is a bijection.

Definition 2.1.6. If a function f : X −→ Y is a bijection then there exists an inverse function
f−1 : Y −→ X. For every y ∈ Y there exists a unique element x ∈ X defined by x = f−1(y).

5
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2.1.1 Domain and Range of Functions

We now consider functions f : X −→ Y for which X and Y subsets of real numbers R. Such
functions are said to be real-valued.

Example 2.1.7. For the function f with the formula y = f(x) = 2x, Dom(f) = R and Ran(f) =
R.

Figure 2.1: Graph ofy = f(x) = 2x

Example 2.1.8. For the function f with the formula y = f(x) =
√
9− x2, Dom(f) = {x ∈ R :

−3 ≤ x ≤ 3} = [−3, 3] and Ran(f) = {y ∈ R : y ≤ 3} = (−∞, 3].

Figure 2.2: Graph of y=f(x)=
√
9− x2
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Example 2.1.9. Let y = f(x) = 2−x
x−1

. Find Dom(f) and Ran(f).

Figure 2.3: Graph of y = f(x) = 2−x
x−1

It is easy to see that Dom(f) = {x ∈ R : x ̸= 1} = R − {1}. Since y = 2−x
x−1

, then x = y+2
y+1

,
and the only value of ywhich will not occur is y = −1, for which the denominator is zero. Hence
Ran(f) = R− {1}
Composition of Functions

2.1.2 Some Elementary Functions

1. Polynomials. A real polynomial is a function whose domain is the set of real numbers,
defined by

f(x) = a0 + a1x+ a2x
2 + ...+ anx

n

where a0, a1, ..., an are real constants(called the coefficients of f and an ̸= 0). The integer n is called
the degree of the polynomial, and denoted by n = deg(f). Polynomials of degree 0, 1, 2, 3, 4, 5 are
called constant, linear, quadratic, cubic, quartic and quintic, respectively. For example,
f(x) = 4−x2+6x8 is a polynomial of degree 8, g(x) = 2 is a polynomial of degree 0 or a constant
polynomial.
2. Rational Functions. A rational function f(x) is a quotient of two polynomials. That is

f(x) = p(x)
q(x)

, where p and q are polynomials and g(x) ̸= 0. For example, f(x) = x2−1
x3+1

is a rational
function.
3. Trigonometric and Inverse Trigonometric Functions. The three basic trigonometric func-
tions are sine, cosine and tangent. Reciprocals of these functions are secant = 1/cosine, cosecant =
1/sine, cotangent = 1/tangent. The inverses are arcsine, arccosine, arctangent and arcotangent.
4. Exponential and Logarithmic Functions. An exponential function is of the form y =
f(x) = ax, where x is a variable, and a is a constant. The domain of f is the real line R = (−∞,∞)
and Ran(f) = (0,∞). When a = e, then f(x) = ex.
The logarithm function is given by y = f(x) = loga x and its domain is (0,∞) and its range is
R = (−∞,∞). The constant a is referred to as the base of the logarithm function. The logarithm
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function with base a = e is called the natural logarithm or Naperian logarithm, and denoted by
ln x.
The following laws of logarithms are easy to derive from the laws of exponents:
• loga xy = loga x+ loga y
• loga

x
y
= loga x− loga y

• loga x
α = α loga x, x any real number

• loga x = logb x
logb a

These formulae hold for any positive x, y, a, b(a ̸= 1, b ̸= 1).
5. Hyperbolic Functions. The four hyperbolic functions are hyperbolic cosine, hyperbolic sine,
hyperbolic tangent and hyperbolic cotangent and are defined as follows:
coshx = ex+e−x

2
, sinh x = ex−e−x

2
, tanhx = sinhx

coshx
, cothx = coshx

sinhx
.

2.2 Limits of Functions

2.2.1 Informal Definition of a Limit

Definition 2.2.1. (Informal definition of a limit) A function f(x) is said to have a limit
L as x approaches (or tends to) a if the values of f(x) can be made as close as we like to L by
taking x sufficiently close to a(but not equal to a). We use the two notations:
limx→a f(x) = L, read as ” the limit of f(x) as x tends to a is equal to L” or
f(x) −→ L as x −→ a, read as ”f(x) tends to L as x tends to a”.

Remarks. It is assumed that the domain of f includes an interval containing a, but not necessarily
a itself. This definition is informal because phrases such as ”close as we want” and ”close
enough” are imprecise; the meaning depends on the context. To a machinist manufacturing
pistons, close enough may mean within a few thousandths of an inch. To an astronomer studying
distant galaxies, close enough may mean within a few thousand light years. This definition should
be clear enough, however, to enable us recognize and evaluate limits of specific functions.
Some limits are easy to compute but others are not so easy to evaluate. Limits of polynomials
are found by substitution. Limits of (many but not all) rational functions can be found by
substitution. Many situations require algebraic manipulation before applying the limits

Example 2.2.2. Find limx→0 3x
2 − 2x+ 1

Solution. As x tends to 0, it is evident that f(x) approaches 3(0)2 − 2(0) + 1 = 1.

Figure 2.4: Limit of y=f(x)=3x2 − 2x+ 1 as x −→ 0
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Example 2.2.3. Find limx→−5
3x+1
x−1

.

Solution. As x tends to −5, it is evident that f(x) approaches 3(−5)+1
−5−1

= 7
3
.

Remark. When we say that f(x) has a limit L as x approaches a, we are really saying that we
can ensure that the error |f(x)− L| will be less than any allowed tolerance, no matter how small
by taking x close enough to a (but not equal to a). It is traditional to use ϵ, the Greek letter
”epsilon” for the error |f(x)− L| and δ, the Greek letter ”delta” for the difference |x− a| that
measures how close x is within that tolerance.

2.2.2 Formal (ϵ− δ) Definition of a Limit

Definition 2.2.4. (Formal(ϵ−δ) Definition of a Limit) We say that a function f(x) approaches
the limit L as x approaches a, and write limx→a f(x) = L if for every number ϵ > 0, there exists
a number δ > 0, possibly depending on ϵ, such that if 0 < |x− a| < δ then |f(x)− L| < ϵ.

Figure 2.5: Limit of f(x) as x−→ a

Remark. Note that the formal definition of a limit does not tell us how to find the limit of a
function, but it does enable us to verify a suspected limit is correct.
If limx→a f(x) ̸= L, then there is an ϵ > 0 such that for every δ > 0 there is an x ∈ R with
0 < |x− a| < δ and |f(x)− L| ≥ ϵ.

Example 2.2.5. Verify that limx→2 3x+ 1 = 7.

Solution. Let Let ϵ > 0 be given. We want to find δ > 0 so that if 0 < |x − a| < δ then
|f(x)− L| < ϵ.
Now, |f(x) − 7| = |3x + 1 − 7| = |3x − 6| = 3|x − 2| < ϵ whenever |x − 2| < δ. This means that
|x− 2| < 1

3
ϵ. Now, if we choose δ = 1

3
ϵ, we will have shown that limx→2 3x+ 1 = 7.

Note that the value δ = 1
3
ϵ is not the only value that will make the implication |f(x) − 7| =

|3x + 1 − 7| = |3x − 6| = 3|x − 2| < ϵ whenever |x − 2| < δ hold. Any smaller positive δ will do
as well. The definition does not work for a ”best” δ, just one that will work. We can thus choose
δ ≤ 1

3
ϵ �.

Example 2.2.6. Verify that limx→2 x
2 = 4.
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Solution. Let ϵ > 0 be given. We want to find δ > 0 so that if 0 < |x − a| < δ then
|f(x)− L| < ϵ.
Now, |f(x)− 4| = |x2 − 4| = |(x+ 2)(x− 2)| = |x+ 2||x− 2|.
We want the expression above to be less than ϵ. We can make the factor |x − 2| as small as
we wish/please by choosing δ properly, but we need to control the factor |x + 2| so that it does
not become too large. If we assume that δ ≤ 1(there is nothing special about 1. Another
positive number could be used and not change the nature of the argument, the details would be
different,however. But for convenience, it is customary to always select/choose δ to be less than
or equal to 1) and require that |x− 2| < δ, then we have

|x− 2| < 1 =⇒ 1 < x < 3 =⇒ 3 < x+ 2 < 5 =⇒ |x+ 2| < 5.

Therefore |f(x)− 4| < 5|x− 2| if |x− 2| ≤ 1. But 5|x− 2| < ϵ if |x− 2| < ϵ
5
.

Therefore, if we take δ = min{1, ϵ
5
}, then |f(x)− 4| < 5|x− 2| < 5 ϵ

5
= ϵ if |x− 2| ≤ δ. This proves

that limx→2 x
2 = 4.

Example 2.2.7. Use the ϵ− δ definition of a limit to prove that limx→3 x
2 = 9.

Solution. Here f(x) = x2 and L = 9, so that

|f(x)− L| = |x2 − 9| = |(x+ 3)(x− 3)| = |x+ 3||x− 3| ...............(⋆)

.
To make |f(x) − L| small, one must control the size of |x − 3|. If by agreement we choose δ ≤ 1
and as a consequence the statement, ”x is near 3” is to mean that x is restricted to the closed
interval [2, 4]. That is, 2 ≤ x ≤ 4. This information allows us to place bounds upon the factor
|x+ 3|. That is |x+ 3| < 7. Thus (⋆) becomes

|f(x)− L| = |x2 − 9| = |(x+ 3)(x− 3)| = |x+ 3||x− 3| < 7δ < ϵ ...............(⋆⋆),

where ϵ > 0 and less than 1, is as small as you want it to be.
The inequality (⋆⋆) tells us that if δ < ϵ

7
, then it follows that |x2 − 9| < ϵ whenever |x − 3| < δ.

So here if we choose δ = min{1, ϵ
7
}, then we are done.

Remark. The ϵ − δ definition of a limit was developed around the 1800′s and it resulted from
the combined research developed by mathematicians Weierstrass, Bolzano and Cauchy.

2.3 Properties of Limits

Theorem 2.3.1. (Limit Theorems/Properties)If limx→a f(x) = L1 and limx→a g(x) = L2,
where L1, L2 ∈ R, then

1. limx→a[f(x) + g(x)] = limx→a f(x) + limx→a g(x) = L1 + L2 [Sum Rule]

2. limx→a[f(x)− g(x)] = limx→a f(x)− limx→a g(x) = L1 − L2 [Difference Rule]

3. limx→a[f(x).g(x)] = limx→a f(x). limx→a g(x) = L1.L2 [Product Rule]
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4. limx→a k.f(x) = k limx→a f(x) = k.L1, (for any number k) [Constant Multiple Rule]

5. limx→a[
f(x)
g(x)

] = limx→a f(x)
limx→a g(x)

= L1

L2
if L2 ̸= 0. [Quotient Rule]

Proof.(1) and (2) and (4) are easy to prove.
(3). Suppose limx→a f(x) = L1 and limx→a g(x) = L2. Given ϵ > 0 there exists δ1 > 0 and δ2 > 0
such that

0 < |x− a| < δ1 =⇒ |f(x)− L1| <
ϵ

2

and

0 < |x− a| < δ2 =⇒ |g(x)− L2| <
ϵ

2
.

Note also that if limx→a g(x) = L2, then 0 < |x − a| < δ2 =⇒ |g(x) − L2| < ϵ. Letting ϵ = 1 in
this definition we have that 0 < |x − a| < δ2 =⇒ |g(x) − L2| < 1 or 0 < |x − a| < δ2 =⇒ −1 <
g(x)− L2 < 1. Equivalently, 0 < |x− a| < δ2 =⇒ −1 + L2 < g(x) < 1 + L2 and hence

0 < |x− a| < δ2 =⇒ |g(x)| < |1 + L2| ≤ 1 + |L2|.....................(⋆)

Then
|f(x)g(x)− L1L2| = |f(x)g(x)− L1g(x) + L1g(x)− L1L2|

= |(f(x)− L1)g(x) + L1(g(x)− L2)|
≤ |(f(x)− L1)g(x)|+ |L1(g(x)− L2)|
= |g(x)||f(x)− L1|+ |L1||g(x)− L2| ≤ ϵ

2
+ ϵ

2
= ϵ.

Therefore limx→a[f(x).g(x)] = L1.L2.

(5). Using (3), by using the fact that since L2 ̸= 0 =⇒ limx→a
1

g(x)
= 1

L2
, we have

|f(x)
g(x)

− L1

L2
| = |f(x)

g(x)
− L1

g(x)
+ L1

g(x)
− L1

L2
|

= | 1
g(x)

(f(x)− L1) + L1(
1

g(x)
− 1

L2
|

≤ | 1
g(x)

||f(x)− L1|+ |L1|| 1
g(x)

− 1
L2
|

= ϵ
2
+ ϵ

2
= ϵ.

Remark. Many situations require algebraic manipulation before the limit theorems can be ap-
plied.

Example 2.3.2. Compute the following limits
(a). limx→3

x2−9
x−3

(b). limx→0

√
x+4−2
x

Solution.(a). The function x2−9
x−3

is not defined when x = 3, since direct substitution gives 0
0
,

which is undefined. That causes no difficulty, since the limit as x approaches 3 depends only on
the values of x near 3 and excludes consideration of the values at x = 3 itself. To evaluate the
limit, note that x2 − 9 = (x− 3)(x+ 3). So for x ̸= 3,

x2 − 9

x− 3
=

(x− 3)(x+ 3)

x− 3
= x+ 3.
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As x approaches 3, x+ 3 approaches 6. Therefore

lim
x→3

x2 − 9

x− 3
= 6.

(b). Since the denominator approaches zero when taking the limit, we may not apply the Quotient
Rule directly. However, if we first apply an algebraic trick, the limit may be evaluated. Multiply
numerator and denominator by

√
x+ 4 + 2

√
x+4−2
x

.
√
x+4+2√
x+4+2

= (x+4)−4

x(
√
x+4+2)

= x
x(

√
x+4+2)

= 1√
x+4+2

Thus
limx→0

√
x+4−2
x

= limx→0
1√

x+4+2

= limx→0 1
limx→0(

√
x+4+2)

= 1
4
.

Remarks. Note that if x approaches a and the values of f(x) do not approach a specific number,
then we say that the limit of f(x) as x approaches a does not exist.

2.3.1 Right-Hand Limits and Left-Hand Limits

Sometimes the values of a function f(x) tend to different limits as x approaches a number a from
different sides. When this happens, we call the limit of f as x approaches a from the right the
right-hand limit of f at a, and the limit of f as x approaches a from the left the left-hand
limit of f at a. We use the notation

limx→a+ f(x) (”the limit of f as x approaches a from the right”).

limx→a− f(x) (”the limit of f as x approaches a from the left”).

Definition 2.3.3. A function f(x) has a limit L as x approaches a if and only if the right-hand
and left-hand limits at a exist and are equal.
That is, limx→a f(x) = L iff limx→a+ f(x) = L and limx→a− f(x) = L.

Example 2.3.4. Consider the function

f(x) =


x+ 2, for x < 1

4 for x = 1
x+ 4 for x > 1

Show that f has no limit as x → 1.

Solution. Clearly,
lim
x→1−

f(x) = 3 ̸= lim
x→1+

f(x) = 5.

Thus the two one-sided limits exits but are not equal. Thus limx→1 f(x) does not exist.
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Example 2.3.5. Graph the following function

f(x) =

{
x2+x
x

, for x ̸= 0
5 for x = 0

By inspection determine limx→0 f(x), limx→0+ f(x) and limx→0− f(x).
By inspection

lim
x→0

f(x) = 1, lim
x→0+

f(x) = 1, lim
x→0−

f(x) = 1

Notice that f(0) = 5 and is not equal to limx→0 f(x). Also note that the limit from the left and
the limit from the right equal limx→0 f(x).
Whenever a limit at a point exists, it is equal to the right-hand and left-hand limits. Also, when-
ever the right-hand and left-hand limits at a point both exist and are equal, the limit exists and
is equal to the common value of the right-hand and left-hand limits.

Example 2.3.6. Use the ϵ− δ definition of a limit to prove that the limit of a sum is the sum of
the limits

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x) = L1 + L2.

Solution. By hypothesis, limx→a f(x) = L1 and limx→a g(x) = L2, so that for a small number
ϵ > 0, there exists δ1 > 0 and δ2 > 0 such that

|f(x)− L1| <
ϵ

2
when 0 < |x− a| < δ1

and
|g(x)− L2| <

ϵ

2
when 0 < |x− a| < δ2

Choose δ to be the smaller of δ1 and δ2, then using the triangle inequality, one can write

|(f(x) + g(x))− (L1 + L2)| = |(f(x)− L1) + (g(x)− L2)|
≤ |f(x)− L1|+ |g(x)− L2|
≤ ϵ

2
+ ϵ

2
= ϵ when 0 < |x− a| < δ

Therefore |(f(x) + g(x))− (L1 + L2)| < ϵ when 0 < |x− a| < δ, which implies that

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x) = L1 + L2. �

Exercise. Use the ϵ− δ definition of a limit to prove all the other limit theorems stated earlier.
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Formal Definition of One-sided Limits

Definition 2.3.7. The limit of f(x) as x approaches a from the right is the number L if the
given ϵ > 0 there exists δ > 0 such that

a < x < a+ δ implies |f(x)− L| < ϵ.

Definition 2.3.8. The limit of f(x) as x approaches a from the left is the number L if the
given ϵ > 0 there exists δ > 0 such that

a− δ < x < a implies |f(x)− L| < ϵ.

Remark. By comparing the two inequalities above, we can see the relation between the one-sided
limits and the two-sided limit. If we subtract a from the δ-inequalities, they become

0 < x− a < δ =⇒ |f(x)− L| < ϵ

and
−δ < x− a < 0 =⇒ |f(x)− L| < ϵ.

Together, these two inequalities say the same thing as

0 < |x− a| < δ =⇒ |f(x)− L| < ϵ,

which is the definition of the limit. In other words, f(x) has a limit L at a if and only if the
right-hand and left-hand limits of f at a exist and are equal.

2.3.2 Limits at Infinity and Infinite Limits

In this subsection, we study two types of limits
• limits at infinity, where x becomes arbitrarily large, positive or negative;
• infinite limits, which are not really limits at all but provide useful symbolism for describing the
behaviour of functions whose values become arbitrarily large, positive or negative.
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Limits at Infinity

Example 2.3.9. Consider the function f(x) = x√
x2+1

.

Figure 2.6: Limit of f(x) as x−→±∞

The values of f(x) seem to approach 1 as x takes on larger and larger positive values and −1
as x takes on negative values that get larger and larger in absolute value. This is equivalent to
saying that limx→∞ f(x) = 1 and limx→−∞ f(x) = −1.
The graph of f conveys this limiting behaviour by approaching the horizontal lines y = 1 as
x → ∞ and y = −1 as x → −∞. These lines are called horizontal asymptotes of the graph. In
general if a curve approaches a straight line as it recedes very far away from the origin, that line
is called an asymptote of the curve.

Definition 2.3.10. (Informal Definition of Limits at ∞ and −∞).
If the function f is defined on an open interval (a,∞) and we can ensure that f(x) is as close as
we want to the limit L by taking x large enough, then we say that f(x) approaches the limit L as
x approaches infinity, and write

lim
x→∞

f(x) = L.

If the function f is defined on an open interval (a,∞) and we can ensure that f(x) is as close as
we want to the limit L by taking x negative and large enough in absolute value, then we say that
f(x) approaches the limit L as x approaches negative infinity, and write

lim
x→−∞

f(x) = L.

Recall that the symbol ∞ does not represent a real number. We can not use it in arithmetic in the
usual way, but we can use the phrase ”approaches ∞” to mean ”becomes arbitrarily large positive”
and the phrase ”approaches −∞” to mean ”becomes arbitrarily large negative”.
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Example 2.3.11. We can see that limx→±∞
1
x
= 0, and the x-axis is a horizontal asymptote of

the graph of y = f(x) = 1
x
.

Figure 2.7: Limit of f(x) as x−→±∞

We use algebraic manipulation/tricks to evaluate such limits.

Example 2.3.12. Evaluate limx→∞ f(x) and limx→−∞ f(x) for f(x) = x√
x2−1

.

Solution. Rewrite the expression for f(x) as follows:

f(x) =
x√

x2 + 1
=

x√
x2(1 + 1

x2 )
=

x
√
x
√

1 + 1
x2

=
x

|x|
√

1 + 1
x2

=
sgn(x)√
1 + 1

x2

where sgn(x) = x
|x| =

{
1, x > 0
−1, x < 0

The factor
√

1 + 1
x2 −→ 1 as x −→ ∞ or −∞. So f(x) must have the same limit as x −→ ±∞

as does sgn(x). Therefore limx→∞ f(x) = 1 and limx→−∞ f(x) = −1.

2.3.3 Limits at Infinity for Rational Functions

The only polynomials that have limits at ±∞ are constant ones, p(x) = c. The situation is more
interesting for rational functions. Recall that a rational function is a quotient of two polynomials.
The following examples show how to render such a function in a form where its limits at infinity
and negative infinity (if they exist) are apparent. The way to do this is to divide the numerator
and denominator by the highest power of x appearing in the denominator. The limits of a rational
function at infinity and negative infinity either both fail to exist or both exist and are equal.
We consider several cases

(a). Numerator and Denominator of the same degree. Divide the numerator and
denominator by highest power of x, appearing in the denominator and apply the limit.
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Example 2.3.13. Evaluate limx→±∞
2x2−x+3
3x2+5

.

Solution. Divide the numerator and denominator by x2 to have

lim
x±∞

2x2 − x+ 3

3x2 + 5
= lim

x→±∞

2− 1x+ 3
x2

3 + 5
x2

=
2− 0 + 0

3 + 0
=

2

3
.

(b). Degree of Numerator less than degree of denominator. Divide both numerator
and denominator by the highest power of x in the denominator.

Example 2.3.14. Evaluate limx→±∞
5x+2
2x3−1

.

Solution. Divide the numerator and denominator by x3 to have

lim
x→±∞

5x+ 2

2x3 − 1
= lim

x→±∞

5
x2 +

2
x3

2− 1
x3

=
0 + 0

2− 0
= 0.

(c). Degree of Numerator is greater than the degree of Denominator. Divide by the
highest of x in the denominator.

Example 2.3.15. Evaluate limx→±∞
2x2−3
7x+4

.

Solution. Divide the numerator and denominator by x2 to have

lim
x→∞

2x2 − 3

7x+ 4
= lim

x→±∞

2x− 3
x

7 + 4
x

= ±∞.

Infinite Limits
A function whose values grow arbitrarily large can sometimes be said to have an infinite limit.
Since infinity is not a number, infinite limits are not really limits at all.

Example 2.3.16. limx→0
1
x2 = ∞.

Thus the limit does not exist(DNE) because the function 1
x2 becomes arbitrarily large near x = 0.

Changing Variables with Substitutions
Sometimes a change of variable can turn an unfamiliar expression into one whose limit we know
how to find.

Example 2.3.17. Compute limx→∞ sin 1
x
.

Solution. If we substitute θ = 1
x
then θ → 0+ as x → ∞. Thus

lim
x→∞

sin
1

x
= lim

θ→0+
sin θ = 0.
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2.3.4 The Sandwich or Squeeze Theorem

Theorem 2.3.18. (The Sandwich or Squeeze Theorem) Suppose that

g(x) ≤ f(x) ≤ h(x)

for all x ̸= a in some interval about a and that

lim
x→a

g(x) = lim
x→a

h(x) = L.

Then limx→a f(x) = L.

Figure 2.8: Sandwich or Squeeze Concept

Proof. Suppose g(x) ≤ f(x) ≤ h(x), and limx→a g(x) = limx→a h(x) = L. Then given ϵ > 0 there
exist δ1 > 0 and δ2 > 0 such that

0 < |x− a| < δ1 =⇒ |g(x)− L| < ϵ

3

and
0 < |x− a| < δ2 =⇒ |h(x)− L| < ϵ

3
.

Letting δ = min{δ1, δ2}, we have

0 < |x− a| < δ =⇒ |f(x)− L| = |f(x)− g(x) + g(x)− L|
≤ |f(x)− g(x)|+ |g(x)− L|
≤ |h(x)− g(x)|+ |g(x)− L|
= |h(x)− L− (g(x)− L)|+ |g(x)− L|
≤ |h(x)− L|+ |g(x)− L|+ |g(x)− L|
= ϵ

3
+ ϵ

3
+ ϵ

3
= ϵ.

This proves that limx→a f(x) = L. �

Remark. The idea is that if the values of f are sandwiched between the values of of two functions
that approach L, then the values of f approach L.

Example 2.3.19. The value of limθ→0
sin θ
θ

can be found by the Sandwich Theorem. We sandwich
sin θ
θ

between the number 1 and a fraction that is known to approach 1 as θ → 0. This tells us that
sin θ
θ

approaches 1 as well.
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2.3.5 Techniques of Evaluating Indeterminate Limits

(a). Evaluating Indeterminate forms 0
0
,∞−∞, ∞∞ using algebraic tricks and change of

variable Techniques

Example 2.3.20. Find limx→0
x√

1−x−
√
1+x

.

Solution. This is a ”0
0
” indeterminate form. We rationalize the denominator.

lim
x→0

x√
1− x−

√
1 + x

= lim
x→0

x(
√
1− x+

√
1 + x)

(
√
1− x−

√
1 + x)(

√
1− x+

√
1 + x)

= − lim
x→0

√
1− x+

√
1 + x

2
= −1

Example 2.3.21. Find limx→∞(
√
x+ 1−

√
x).

Solution. This is an example of an ”∞−∞” type. We multiply and divide by (
√
x+ 1−

√
x)

(
√
x+ 1−

√
x) = (

√
x+ 1−

√
x)

(
√
x+ 1−

√
x)

(
√
x+ 1−

√
x)

= · · · = 1

(
√
x+ 1 +

√
x)

→ 0 as x → ∞.

Example 2.3.22. Find limx→∞
√
x(
√
x+ 1−

√
x).

Solution. Rationalization gives

√
x(
√
x+ 1−

√
x) =

√
x

(
√
x+ 1−

√
x)

.

This is now an ”∞
∞” form, and we divide the numerator and denominator by

√
x to obtain

√
x(
√
x+ 1−

√
x) =

1

(
√

1 + 1
x
+ 1)

→ 1

2
as x → ∞.

Example 2.3.23. Find limx→Π
2

cos x
sin(cos x)

.

Solution. This is a ”0
0
” indeterminate form. We substitute t = cos x. Then t → 0 as x → Π

2
.

Therefore

lim
x→Π

2

cos x

sin(cosx)
= lim

t→0

t

sin t
= 1.

Example 2.3.24. Find limx→0
tan−1 x

x
.

Solution. This is a ”0
0
” indeterminate form. Let t = tan−1 x and t → 0 as x → 0. Therefore

lim
x→0

tan−1 x

x
= lim

t→0

t

x
tan t = lim

t→0

t

sin t
. cos t = lim

t→0

t

sin t
. lim
t→0

cos t = 1.

(b). Evaluating Indeterminate forms 0
0
and ∞

∞ using L’Hôpital’s Rule
This rule is designed to deal with ”0

0
” and ”∞

∞” indeterminate forms and it involves differentiation.
This will be discussed in Chapter Two. Indeterminate forms like ”0.∞” and 1∞ can be rewritten
to look like 0

0
or ∞

∞ , in which case L’Hôpital’s Rule is applicable.
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2.4 Continuous Functions

We first define the notion of continuity of a function in terms of limits and then a few equivalent
definitions.

Definition 2.4.1. Suppose that a function f is defined on a subset A of R and x ∈ A. If
limx→a f(x) exists and if limx→a f(x) = f(a), then we say that f is continuous at a.
A function f is continuous on A(its domain) if it is continuous at each point a ∈ A(its domain).

Remark. Briefly, continuity of a function f at a means that the limit of f at the point a is equal
to the value of f at a. In other words, when x is close to a, then f(x) is close to f(a).

2.4.1 continuity Test and Points of Discontinuity

Continuity Test: For a function f to be continuous at a, it must satisfy the following three
conditions:
1. f must be defined at a;

2. the limit, limx→a f(x), must exist(i.e < ∞);

3. limx→a f(x must equal f(a).
If any one of these conditions is not satisfied, then f is not continuous at a.

Definition 2.4.2. If a functionf is not continuous at a, we say that it is discontinuous at a, or
that a is a discontinuity of f or a point of discontinuity of f .

2.4.2 Formal (ϵ− δ) Definition of Continuity

Definition 2.4.3. (Formal or ϵ − δ definition of continuity) A function f is continuous at
a ∈ A if for any ϵ > 0 there exists a δ > 0 such that for all x ∈ A

|x− a| < δ implies that |f(x)− f(a)| < ϵ.

Example 2.4.4. Verify that the function f : R −→ R defined by f(x) = 2x is continuous on R.

Solution. Let ϵ > 0 be given such that |x− y| < δ =⇒ |f(x)− f(y)| < ϵ. That is

|f(x)− f(y)| < ϵ
|2x− 2y| < ϵ
2|x− y| < ϵ
|x− y| < ϵ

2

So, if we choose δ ≤ ϵ
2
will have shown that f is continuous on R.
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2.4.3 Types of Discontinuities

Remark. Note that in the formal definition of continuity of a function f , the number δ = δ(x, ϵ)
is a function of the point x and ϵ. If δ = δ(ϵ) a function of ϵ only, we say that f is uniformly
continuous.

Definition 2.4.5. If at a point a ∈ A the limit limx→a f(x) exists, but f(a) either is not defined
or limx→a f(x) ̸= f(a), then a is a removable point of discontinuity. In other words, f is
discontinuous at a but can be re-defined at that single point so that it becomes continuous there.

Example 2.4.6. The function

f(x) = { x3, if x ̸= 0
2, if x = 0,

is discontinuous at a = 0 and limx→0 f(x) = 0 so that limx→0 f(x) ̸= f(0). Thus the point 0 is a
removable point of discontinuity. To remove it, define f(0) = 0.

Definition 2.4.7. If f is discontinuous at a point a ∈ A and one-sided limits f(a−) and f(a+)
both exists, but f(a−) ̸=f(a+), then f is said to have a discontinuity of the first kind or jump
discontinuity.

Figure 2.9: Jump Discontinuity at a

Example 2.4.8. The function

f(x) = { x, if x < 1
3x2 − 1, if x ≥ 1

is discontinuous at a = 1, the left-hand and right-hand limits of f at 1 both exists and limx→1− f(x) =
1 ̸= 2 = limx→1+ f(x). Thus the point 1 is a jump discontinuity.
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Definition 2.4.9. If at a ∈ A, at least one of the one-sided limits does not exist or is infinite,
then we say that the point a is a discontinuity discontinuity of the second kind.

Figure 2.10: Discontinuity of the Second Kind at a

2.4.4 Right Continuity and Left Continuity

Definition 2.4.10. A function f is continuous from the right(from the left) at the point a if the
following two conditions are satisfied:

1. limx→a+ f(x) = f(a+)
(
limx→a− f(x) = f(a−)

)
;

2. f(a+) = f(a)
(
f(a−) = f(a)

)
.

Clearly a function f is continuous at a if it is both right continuous and left continuous at a.

Remark. Clearly, a function f is continuous at a point a provided that, roughly speaking, its
graph has no breaks( gaps or holes) as it passes the point (a, f(a)). That is, f is continuous at a
if we can draw the graph through (a, f(a)) without lifting our pencil from the paper.

Remark. Clearly the sine and cosine functions are continuous for every value of x tangent function
is continuous where it is defined(its domain), polynomials are continuous at every point, rational
functions are continuous wherever they are defined, the absolute-value function is continuous, all
rational powers x

m
n are continuous, exponential and logarithmic functions, hyperbolic functions

are continuous.

2.4.5 Algebraic Properties of Continuous Functions

Theorem 2.4.11. If the functions f and g are continuous at a point a, then the following func-
tions are continuous at a:
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1. Sums: f + g;

2. Differences: f − g;

3. Products: f.g;

4. Constant multiples: k.f ;

5. Quotients: f
g

(provided that g(a) ̸= 0).

Proof. The proofs involve the use of limit theorems.

(a). limx→a[f(x) + g(x)] = limx→a f(x) + limx→a g(x) = f(a) + g(a), so f + g is continuous at
a.
The proofs to the other statements are done similarly, and are hence left as exercises.

2.5 Exercises and Some Solved Problems

1. Let f, g, h : R −→ R be defined by y = f(x) = 1
x−2

, y = g(x) = 3x−5 and y = h(x) = sin(2x+1).
(a). Find

(i). the domain and range of f, g and h.

(ii). the composite functions f ◦ g, g ◦ h and g ◦ f .

(iii). g−1(x).

(b). Which of these functions is/are one-to-one, onto, many-to-one?

(c). Determine the domains of the functions

(i). y =
√
4− x2 (ii). y =

√
x2 − 16 (iii). y = 1

x−3
(iv). y = 1

x2−4
(v). y = x

x2+5

Solution.

(i). Since y must be real, 4− x2 ≥ 0, or x2 ≤ 4. Thus Dom(f) is the interval −2 ≤ x ≤ 2. It
is easy to check that the range is 0 ≤ y ≤ 2.

(ii). Here x2− 16 ≥ 0, or x2 ≥ 16. Thus the domain consist of the intervals x ≤ −4 and x ≥ 4.

(iii). The function is defined for every real value except 3. Thus the domain is R− 3.

(iv). The function is defined for x ̸= ±2.

(v). Since x2 + 5 ̸= 0 for all x, the domain is the set of real numbers.
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2. Find the following limits without using L’Hôpital’s Rule.

(i). limx→1
x−1√
x+3−2

. Solution: 4

(ii). limx→0
( 1
−2+x

)−(−1
2
)

x
. Solution: −1

4

(iii). limx→∞
2+

√
x

2−
√
x
. Solution: −1

3. (a). State the formal definition of a limit of a function f(x) as x approaches a.

(b). Use the formal definition of a limit to verify the indicated limit in each case.

(i). limx→1
1

x+1
= 1

2
.

(ii). limx→5 x
2 = 25.

(iii). limx→2 5− 2x = 1.

(c). Evaluate the following limits.

(i). limx→−∞
cos 1

x

1+ 1
x

.

(ii). limx→∞( 1
x
)

1
x .

(iii). limx→±∞(3 + 2
x
)(cos 1

x
).

(d). Use the formal definition of a limit to verify that limx→2 x
2 + 3x = 10.

Solution Let ϵ > 0 be chosen. We must produce a δ > 0 such that, whenever 0 < |x− 2| < δ
then |(x2 + 3x) − 10| < ϵ. That is, |(x − 2)(x + 5)| < ϵ. Let δ ≤ 1. Then |x − 2| < 1 implies
that 1 ≤ x ≤ 3 and hence |x + 5| ≤ 8. Thus 0 < |x − 2| < δ then 8|(x − 2)| < ϵ and thus
|x − 2| < ϵ

8
. Hence, if we take δ to be the minimum of 1 and ϵ

8
, then whenever 0 < |x − 2| < δ,

|(x2 + 3x)− 10| < 8δ ≤ ϵ.

4. (a). State the Sandwich/Squueze Theorem.

(b). Given that 3− x2 ≤ f(x) ≤ 3 + x2 for all x ̸= 0, find limx→0 f(x).

5. (a). Evaluate the limit or explain why it does not exist.

(i). limx→4(x
2 − 4x+ 1).

(ii). limx→9

√
x−3
x−9

.

(iii). limx→3
x2−6x+9
x2−9

.
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(iv). limx→0
1

3+2
1
x
.

Solution.

• Note that as x → 0−, 1
x
→ −∞, and 2

1
x → 0, and limx→0

1

3+2
1
x
= 1

3
.

• As x → 0+, 1
x
→ ∞, and 2

1
x → ∞, and limx→0

1

3+2
1
x
= 0.

Thus limx→0
1

3+2
1
x
does not exist.

(b). (i). State the formal definition of continuity of a function f : R −→ R at the point x0 ∈ R.

(ii). Prove that the function f : R −→ R defined by f(x) = x2 is continuous at x0 ∈ R.

(c). Let f : R −→ R defined by

f(x) =
{ x, x < 1

5− x, x ≥ 1

(i). Sketch the graph of f .

(ii). Is f continuous at x = 1? If not, state the nature of discontinuity of f at x = 1.

(d). Show that at x = 0, the function f(x) = 1

3
1
x+1

has a jump discontinuity.
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Chapter 3

DIFFERENTIATION OF FUNCTIONS
OF A SINGLE VARIABLE

Two fundamental problems are considered in calculus:

• The problem of slopes is concerned with finding the slope of (the tangent line to) a given
curve at a given point on the curve.

• The problem of areas is concerned with finding the area of a plane region bounded by curves
and straight lines.
The solution of the problem of slopes is the subject of differential calculus. As we will see, it has
many applications in mathematics and other disciplines.
The problem of areas is the subject of integral calculus, which we begin in Chapter 4.

3.1 Tangent Lines and Their Slopes

3.1.1 Tangent Lines

Conditions for Tangency to a Curve at a Point
Let C be the graph of a function y = f(x) and let P be the point (x0, y0) on C, so that y0 = f(x0).
What do we mean when we say that the line L is tangent to C at P?
Note that a tangent line L should have the ”same direction” as the curve does at the point of
tangency P .

27
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A reasonable definition of tangency can be stated in terms of limits. If Q is a point on C different
from P , then the line through P and Q is called a secant line to the curve. This line rotates
around P as Q moves along the curve. If L is a line through P whose slope is the limit of the slopes
of these secant lines PQ as Q approaches P along C, then we will say that L is tangent to C at P .

Figure 3.1: Secant lines PQ approach tangent line L as Q approaches P along the curve C

The slope of the line PQ is
f(x0 + h)− f(x0)

h
.

Note that h can be positive or negative, depending on whether Q is to the right or left of P .

Definition 3.1.1. Suppose f is continuous at x = x0 and that

lim
h→0

f(x0 + h)− f(x0)

h
= m,

exists. Then the straight line having slope m and passing through the point P = (x0, f(x0)) is
called the tangent line (or simply the tangent) to the graph of y = f(x) at P . An equation of
this tangent is

y = m(x− x0) + y0.
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Example 3.1.2. Find an equation of the tangent line to the curve y = x2 at the point (1, 1).

Solution. Here f(x) = x2, x0 = 1, and y0 = f(1) = 1. The slope of the required tangent is

m = limh→0
f(1+h)−f(1)

h
= limh→0

(1+h)2−1
h

= limh→0
1+2h+h2−1

h

= limh→0
2h+h2

h

= limh→0(2 + h) = 2.

Figure 3.2: Secant lines PQ approach tangent line L as Q approaches P along the curve C

Accordingly, the equation of the tangent line at (1, 1) is y = 2(x− 1) + 1 or y = 2x− 1.

3.1.2 The Slope of a Curve

Definition 3.1.3. The slope of a curve C at a point P is the slope of the tangent line to C at P
if such a tangent line exists. In particular, the slope of the graph of y = f(x) at the point x0 is

lim
h→0

f(x0 + h)− f(x0)

h
.

Example 3.1.4. Find the slope of the curve y = x2 at the point x = −2.

Solution. If x = −2, then y = 4, so the slope is

m = limh→0
f(x0+h)−f(x0)

h

= limh→0
(−2+h)2−4

h

= limh→0
4−4h+h2−4

h

= limh→0
−4h+h2

h
= limh→0(−4 + h) = −4.
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The average rate of change in a quantity over a period of time is the amount of change divided
by the time it takes. For instance, average speed is distance traveled divided by the elapsed time,
say, in km/hour,etc.

3.2 The Derivative

Definition 3.2.1. The derivative of a function f is another function f ′ (read as ”f prime”)
defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

at all points x for which the limit exists (i.e., is a finite real number). If f ′(x) exists, we say that
f is differentiable at x otherwise, it is said to be non-differentiable at x.

Remark. Note that the domain of f ′ is the subset of dom(f) where f ′ is defined. That is, The
domain of the derivative f ′ is the set of numbers x in the domain of f where the graph of f
has a non-vertical tangent line. Dom(f ′) of f ′ may be smaller than dom(f) because it contains
only those points in dom(f) at which f is differentiable. Values of x in dom(f) where f is not
differentiable and that are not endpoints of dom(f) are singular points of f .
Remark. The value of the derivative of f at a particular point x0 can be expressed as a limit in
either of two ways:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

x→x0

f(x)− f(x0)

x− x0

.

In the second limit x0+h is replaced by x, so that h = x−x0 and h → 0 is equivalent to x → x0. The
process of calculating the derivative f ′ of a given function f is called differentiation. A function
is differentiable on a set S if it is differentiable at every point x in S. Polynomial functions are
differentiable, as are rational functions and trigonometric functions (in their domains). Composites
of differentiable functions are differentiable, and so are sums, differences, products, powers, and
quotients of differentiable functions, where defined. Derivatives are the functions we use to measure
the rates at which things change.

3.2.1 Right Derivative and Left Derivative

f ′
+(a) = limh→0+

f(a+h)−f(a)
h

and f ′
−(a) = limh→0−

f(a+h)−f(a)
h

3.2.2 Leibniz Notation

Because functions can be written in different ways, it is useful to have more than one notation for
derivatives. If y = f(x), we can use the dependent variable y to represent the function, and we
can denote the derivative of the function with respect to x in any of the following ways:

Dxy = y′ =
dy

dx
=

d

dx
f(x) = f ′(x) = Dxf(x) = Df(x).

Often the most convenient way of referring to the derivative of a function given explicitly as an
expression in the variable x is to write d

dx
(read ad ”d dx”) in front of that expression. The symbol

d
dx

is a differential operator and should be read ”the derivative with respect to x of . . .” The
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notations dy
dx

and d
dx
f(x) are called Leibniz notations for the derivative, after Gottfried Wilhelm

Leibniz (1646-1716), one of the creators of calculus, who used such notations.
The main ideas of calculus were developed independently by Leibniz and Isaac Newton (1642-
1727). Newton used notations similar to the prime y′ notations.

The Newton quotient [f(x+h)−f(x)]
h

, whose limit we take to determine the derivative dy
dx

(read ad

”dy dx”), can be written in the form ∆y
∆x

, where ∆y = f(x + h)− f(x) is the increment of y and
∆x = (x+ h)− x = h is the corresponding increment in x as we pass from the point (x, f(x)) to
the point (x+ h, f(x+ h)) on the graph of f .

Figure 3.3: dy
dx

= lim∆x→0
∆y
∆x

3.2.3 Differentiability and Continuity

Recall that we have defined differentiability of a function f(x) at x0 in terms of a limit. If this
limit does not exists, then we said that f is non-differentiable at x = x0. Geometrically, the
non-differentiability of f at x = x0 can manifest itself in several different ways. First of all, the
graph of f(x) could have no tangent line at x = x0. Secondly, the graph could have a vertical
tangent line at x = x0.
Closely related to the concept of differentiability is the concept of continuity. Note that every
differentiable function at x = a is continuous there. However, a function may be continuous at
x = a but still not be differentiable there. For instance, the absolute value function f(x) = |x| is
continuous on R but not differentiable at x = 0.

Theorem 3.2.2. (Differentiability implies continuity). If a function f is differentiable at
x, then f is continuous at x.

Proof. Since f is differentiable at x, we know that

lim
h→→0

f(x+ h)− f(x)

h
= f ′(x)
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exists. But using the limit theorems, we have

limh→→0

(
f(x+ h)− f(x)

)
= limh→→0

(
f(x+h)−f(x)

h

)
(h)

= (f ′(x))(0) = 0.

This is equivalent to

lim
h→→0

f(x+ h) = f(x),

which says that f is continuous at x. �

3.3 Differentiation Rules

If every derivative had to be calculated directly from the definition(Method of First Principles),
calculus would indeed be a painful subject. In this section we show how to differentiate func-
tions rapidly-without having to apply the definition each time. We now give several examples of
the calculation of derivatives algebraically from the definition of derivative(by Method of First
Principles). Some of these are the basic building blocks from which more complicated derivatives
can be calculated later.

Theorem 3.3.1. (Rule 1: Derivative of a Constant and a Linear Function)
If f(x) = ax+ b, then f ′(x) = a.

Proof. Using the definition (First Principles)

f ′(x) = limh→0
f(x+h)−f(x)

h

= limh→0
a(x+h)+b−(ax+b)

h

= limh→0
ah
h
= a. �

A consequence of this result is that the derivative of a constant function is zero. That is, if
g(x) = c (constant), then g′(x) = 0.

Theorem 3.3.2. (Rule 2: Derivative of a Power Function)
If f(x) = xr, then f ′(x) = rxr−1, when xr makes sense as a real number.

Proof. Let r = n, a positive integer. Note that

an − bn = (a− b)
[
an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1

]
.



3.3. DIFFERENTIATION RULES 33

If f(x) = xn, a = x+ h and b = x, then a− b = h, and,

f ′(x) = limh→0
(x+h)n−xn

h

= limh→0

h

[ n terms each with limit xn−1 as h approaches zero︷ ︸︸ ︷
(x+ h)n−1 + (x+ h)n−2x+ (x+ h)n−3x2 + · · ·+ xn−1

]
h

= lim→0

[ n terms︷ ︸︸ ︷
xn−1 + xn−1 + xn−1 + · · ·+ xn−1

]
= nxn−1. �

Theorem 3.3.3. (Rule 3: Constant Multiple Rule)
If f is a differentiable function of x and k is a constant, the

d

dx
(k.f) = k.

df

dx
.

Proof. Easy and left as an exercise.

Theorem 3.3.4. (Rule 4: Sum and Difference Rule)
If f and g are a differentiable functions of x then their sum and difference are differentiable at
every point where f and g are both differentiable. At such points,

d

dx
(f ± g) =

df

dx
± dg

dx
.

Proof. Exercise.
This rule can also be generalized to a finite set of functions.

Second and Higher Order Derivatives The derivative

y′ =
dy

dx

is the first derivative of y with respect to x. If the first derivative is also a differentiable function,
then its derivative

y′′ =
dy′

dx
=

d

dx
(
dy

dx
) =

d2y

dx2
,

is called the second derivative of f with respect to x. If y′′ (” y double prime” ) is differentiable,
then its derivative

y′′′ =
dy′′

dx
(”y triple prime”)

is the third derivative of f with respect to x and so on. Thus

y(n) =
d

dx
y(n−1) (”y super n”)

denotes the nth derivativeof y with respect to x.
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Theorem 3.3.5. (Rule 5: The Product Rule)
The product of two differentiable functions f and g of x is differentiable and

d

dx
(f.g) = f

dg

dx
+ g

df

dx
.

Proof. Let f and g of x be differentiable functions of x. Then

(fg)′(x) = limh→0
f(x+h)g(x+h)−f(x)g(x)

h

= limh→0
f(x+h)g(x+h)−f(x)g(x+h)+f(x)g(x+h)−f(x)g(x)

h

= limh→0

[
[f(x+h)−f(x)

h
]g(x+ h) + f(x)[g(x+h)−g(x)

h
]
]

= f ′(x)g(x) + f(x)g′(x) �

Note that to get to the last line of the proof, we have used the fact that g is continuous(since it
is differentiable and hence g(x+ h) → g(x) as h → 0).

Theorem 3.3.6. (Rule 5: The Quotient Rule)
At a point where g ̸= 0, the quotient y = f

g
of two differentiable functions of x is differentiable

and

d

dx

(f
g

)
=

g df
dx

− f dg
dx

g2
.

Proof.Let f and g of x be differentiable functions of x and suppose g(x) ̸= 0. Then

(f
g
)′(x) = limh→0

f(x+h)
g(x+h)

− f(x)
g(x)

h

= limh→0
g(x)f(x+h−f(x)g(x+h))

hg(x+h)g(x)

= limh→0
g(x)f(x+h)−g(x)f(x)+g(x)f(x)−f(x)g(x+h)

hg(x+h)g(x)

= limh→0
g(x)[

f(x+h)−f(x)
h

]−f(x)[
g(x+h)−g(x)

h
]

g(x+h)g(x)

= g(x)f ′(x)−f(x)g′(x)
[g(x)]2

�

Note that to get to the last line of the proof, we have used the fact that g is continuous(since it
is differentiable and hence g(x+ h) → g(x) as h → 0).

Theorem 3.3.7. (Rule 6: The Chain Rule)
If f f(u) is differentiable at u = g(x), and g(x) is differentiable at x, then the composite function
f ◦ g(x) = f(g(x)) is differentiable at x, and (f ◦ g)′(x) = f ′(g(x))g′(x).
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Proof 1. Suppose that f is differentiable at the point u = g(x) and that g is differentiable at x.
Let the function E(k) be defined by

E(0) = 0,

E(k) = f(u+k)−f(u)
k

= f ′(u), if k ̸= 0.

By the definition of derivative, limk→0E(k) = f ′(u)−f ′(u) = 0 = E(0), and so E(k) is continuous
at k = 0. Also, whether k = 0 or not, we have

f(u+ k)− f(u) = (f ′(u) + E(k))k.

Now, put u = g(x) and k = g(x+ h)− g(x), so that u+ k = g(x+ h), and obtain

f(g(x+ h))− f(g(x)) = (f ′(g(x) + E(k))(g(x+ h)− g(x)).

Since g is differentiable at x, limh→0
g(x+h)−g(x)

h
= g′(x).

Also, g is continuous at x, so limh→0 k = limh→0(g(x+ h)− g(x)) = 0. Since E is continuous at 0,
limh→0E(k) = limk→0E(k) = E(0) = 0.
Hence

[f(g(x))]′ = limh→0
f(g(x+h))−f(g(x))

h

= limh→0

(
f ′(g(x) + E(k))

)
g(x+h)−g(x)

h

=
(
f ′(g(x)) + 0

)
g′(x)

= f ′(g(x))g′(x). �
Proof 2.

[f(g(x))]′ = limh→0
f(g(x+h))−f(g(x))

h

= limh→0
f(g(x+h))−f(g(x))

g(x+h)−g(x)
. (g(x+h)−g(x))

h

= limh→0
f(u+k)−f(u)

k
. (g(x+h)−g(x))

h

= f ′(u)g′(x) = f ′(g(x))g′(x). �
Idea of the proof. Introduce g(x+h)−g(x)in the numerator and denominator and let g(x) = u
and g(x+ h) = u+ k. Note k→ 0 as h → 0.

Remark. The Chain Rule tells us how to differentiate composites of functions whose derivatives
we already know. If y = f(u), where u = g(x), then y = f(g(x)) and:
at u, y is changing dy

du
times as fast as u is changing;

at x, u is changing du
dx

times as fast as x is changing.

Therefore, at x, y = f(u) = f(g(x)) is changing dy
du

du
dx

times as fast as x is changing. That is

dy

dx
=

dy

du

du

dx
,

where dy
du

is evaluated at u = g(x).
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Figure 3.4: Chain Rule

Example 3.3.8. Find the derivative of y =
√
x2 + 1

Solution Here y = f(g(x)), where f(u) =
√
u and g(x) = x2 + 1. Since f ′(u) = 1

2
√
u
, g′(x) =

2x, then by the Chain Rule

dy
dx

= d
dx
(f(g(x))) = f ′(g(x))g′(x)

= 1

2
√

g(x)
(2x)

= 1
2
√
x2+1

(2x)

= x
2
√
x2+1

Usually, when applying the Chain Rule, we do not introduce symbols to represent the functions
being composed, but rather just proceed to calculate the derivative of the ”outside” function and
then multiply by the derivative of whatever is ”inside.” You can say to yourself: ”the derivative
of f of something is f’ of that thing, multiplied by the derivative of that thing.” This is called the
”Inside-Outside” Rule.

Example 3.3.9. Find the derivatives of
(a). y = (8x− 3)5

(b). y = f(xt) = sin(x2 − 4)

(c). y =
(
3x+ 1

(2x+1)3

) 1
4

(d). y = cos2(3x)

Solution.

(a). Let u = 7x − 3. Thus y = u10. Clearly, dy
du

= 10y9 and du
dx

= 7. Thus by the Chain Rule
dy
dx

= dy
du

du
dx

= 10u9(7) = 10u9 = 70(7x− 3).

(b). Let u = x2 − 4. Then y = sin u and dy
du

= cosu and du
dx

= 2x. Thus dy
dx

= dy
du

du
dx

=
cosu.(2x) = 2x cos(x2 − 4).

Repeated Use. We sometimes have to use the Chain Rule two or more times to get the job done.

(c).
dy
dx

= 1
4
(3x+ 1

(2x+1)3
)−

3
4

d
dx
(3x+ 1

(2x+1)3
)

= 1
4
(3x+ 1

(2x+1)3
)−

3
2 (3− 3

(2x+1)4
) d
dx
(2x+ 1)

= 3
4
(1− 2

(2x+1)4
)(3x+ 2

(2x+1)3)

− 3
4 .
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(d).
d
dx

cos2(3x) = 2 cos 3x. d
dx
(cos 3x) (Power and Chain Rule)

= 2 cos 3x(− sin 3x) d
dx
(3x) (Chain Rule again)

= 2 cos 3x(− sin 3x)(3)

= −6 cos 3x sin 3x.

Note. The choice of which rule to use in solving a differentiation problem can make a difference
in how much work you have to do.

3.4 Derivatives of Trigonometric and Inverse Trigonomet-

ric Functions

Trigonometric functions are important because so much of the phenomena we want information
about are periodic(heart rhythms, earthquakes, tides, weather,etc). Continuous periodic functions
can always be expressed in terms of sines and cosines, so the derivatives of sines and cosines play
an important role in describing important changes.
Some Special Limits

(1). limθ→0
sin θ
θ

= 1.

(2). limh → 0 cosh−1
h

= 0.

3.4.1 Derivative of Sine and Cosine

Theorem 3.4.1. d
dx

sinx = cos x.

Proof. We use the Definition/First Principles.

d
dx

sinx = limh→0
sin(x+h)−sinx

h

= limh→0
sinx cosh+cosx sinh−sinx

h

= limh→0
sinx(cosh−1)+cosx sinh

h

= limh→0 sinx. limh→0
(cosh−1)

h
+ cosx. limh→0

sinh
h

= sinx(0) + (cosx).(1)

= cos x.

Theorem 3.4.2. d
dx

cos x = − sin x.
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Proof. We use the Definition/First Principles.

d
dx

cos x = limh→0
cos(x+h)−cosx

h

= limh→0
cosx cosh−sinx sinh−cosx

h

= limh→0
cosx(cosh−1)−sinx sinh

h

= limh→0 cos x. limh→0
(cosh−1)

h
− sin x. limh→0

sinh
h

= cosx(0)− (sinx).(1)

= − sinx.

Recall that sin(Π
2
− x) = cos x and cos(Π

2
− x) = sinx. Using the Chain Rule we have: d

dx
cosx =

d
dx

sin(Π
2
− x) = cos(Π

2
− x)(−1) = −sinx.

3.4.2 Derivatives of other Basic Trigonometric Functions

Because sin x and cos x are differentiable functions of x, the related functions

tanx = sinx
cosx

sec x = 1
cosx

cotx = cosx
sinx

csc x = 1
sinx

are differentiable at every value of x at which they are defined(i.e. their domain). Their derivatives,
calculated using the Quotient Rule are:

d
dx

tanx = sec2 x d
dx

sec x = sec x tanx

d
dx

cotx = csc2 x d
dx

csc x = − csc x cotx

Example 3.4.3. Find dy
dx

if y = tanx.

Solution.
d
dx

tanx = d
dx

sinx
cosx

=
cosx d

dx
(sinx)−sinx d

dx
(cosx)

cos2 x

= cosx−sinx(− sinx)
cos2 x

= cos2 x+sin2 x
cos2 x

= 1
cos2 x

= sec2 x.

Example 3.4.4. Find dy
dx

if y = sec x.

Solution.

d

dx
sec x =

d

dx
(

1

cos x
) =

0. cosx− 1(− sin x)

cos2 x
=

sinx

cos2 x
=

sinx

cosx

1

cosx
= tanx sec x.

Exercises.
1. Find the derivatives of the following functions
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(a). y = 3x+ cot(x
2
)

(b). y = ( 3
sin(2x)

)
Solutions.

(a). 3− 1
2
csc2(x

2
)

(b). −6 csc(2x) cot(2x)

Example 3.4.5. Find the tangent and normal lines to the curve y = tan πx
4

at the point (1, 1).

Solution. The slope of the tangent to y = tan πx
4

at the point (1, 1) is

dy

dx
|x=1 =

π

4
sec2(

πx

4
)|x=1 =

π

4
sec2(

π

4
) =

π

4
(
√
2)2 =

π

2
.

The tangent line is y = 1 + π
2
(x− 1) or y = π

2
x− π

2
+ 1.

The normal has slope − 2
π
, so its point-slope equation is y = 1− 2

π
(x− 1) or y = 2

π
x+ 2

π
+ 1.

We now consider derivatives of inverse trigonometric functions.

• The function y = sin−1 x (−1 < x < 1) has its inverse x = sin y (−π
2
< y < π

2
) are

inverses of each other. Thus

d

dx
sin−1 x =

1

(sin y)′
=

1

cos y
=

1√
1− sin2 y

=
1√

1− x2
.

• The function y = cos−1 x (−1 < x < 1) has its inverse x = cos y (0 < y < π) are
inverses of each other. Thus

d

dx
cos−1 x =

1

(cos y)′
=

1

− sin y
= − 1√

1− cos2 y
= − 1√

1− x2
.

• The function y = tan−1 x (−∞ < x < ∞) has its inverse x = tan y (−π
2
< y < π

2
) are

inverses of each other. Thus

d

dx
tan−1 x =

1

(tan y)′
= cos2 y =

1

1 + tan2 y
=

1

1 + x2
.

• The function y = cot−1 x (−∞ < x < ∞) has its inverse x = cot y (0 < y < π) are
inverses of each other. Thus

d

dx
cot−1 x =

1

(cot y)′
= − 1

1 + x2
.

3.5 Derivatives of Exponential and Logarithmic Functions

The exponentialy = ax (0 < a ̸= 1) and logarithm function x = loga y (0 < y < ∞), are inverses
of each other. By the definition of the derivative/First Principles:

d
dx
ax = lim∆x→0

ax+∆x−ax

∆x

= ax lim∆x→0
a∆x−1
∆x

= ax ln a.
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In particular, if a = e,
d

dx
ex = ex ln e = ex.

For the logarithmic function y = loga x, consider a point x > 0. By the definition of derivative

d
dx

loga x = lim∆x→0
loga(x+∆x)−loga x

∆x

= 1
x
lim∆x→0

loga(1+
∆x
x

)
∆x
x

Since lim∆x→0
loga(1+t)

t
= loga e , by substituting t = ∆x

x
, it follows that

d

dx
loga x =

loga e

x
................(⋆)

Note that this result can be deduced by using

(loga y)
′ =

1

(ax)′
=

1

xx ln a
=

1

y ln a
=

loga e

y
.

By setting a = e, in (⋆), we find
d

dx
ln x =

1

x
(x > 0)

3.6 Derivatives of Hyperbolic and Inverse Hyperbolic Func-

tions

d

dx
coshx =

d

dx
(
ex + e−x

2
) =

ex − e−x

2
= sinh x.

Similarly,
d

dx
sinh x = coshx.

d
dx

tanhx = d
dx
( sinhx
coshx

) = cosh2 x−sinh2 x
cosh2 x

= 1
cosh2 x

= (sech x)2

Likewise
d

dx
coth x = −(csch x)2

Now, we compute the derivatives of the inverse hyperbolic functions.

d

dx
cosh−1 x =

d

dx
[ln(x+

√
x2 − 1)] =

√
x2 − 1 + x

(x+
√
x2 − 1)

√
x2 − 1

=
1√

x2 − 1
, x > 1.

d

dx
sinh−1 x =

d

dx
[ln(x+

√
x2 + 1)] = · · · = 1√

x2 + 1
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d

dx
tanh−1 x =

d

dx
[
1

2
ln

1 + x

1− x
] =

1

2
[
1− x

1 + x
.

2

(1− x)2
] =

1

1− x2
, |x| < 1.

and
d

dx
coth−1 x =

1

1− x2
, |x| > 1.

3.7 Derivatives and Indeterminate limits of type 0
0 and ∞

∞

Indeterminate limits of type 0
0
and ∞

∞ can be evaluated using L’Hôpital’s Rule.

3.7.1 L’Hôpital’s First Rule for the Indeterminate form 0
0

Theorem 3.7.1. (L’Hôpital’s First Rule)Suppose that the functions f and g are differentiable
in a deleted σ− neighborhood (a− σ, a+ σ)− {a} (σ > 0) of a point a. Moreover, suppose that

lim
x→a

f(x) = lim
x→a

g(x) = 0,

and g(x) ̸= 0 in the deleted neighborhood of a. Then if the limit limx→a
f ′(x)
g′(x)

exists, then so does

limx→a
f(x)
g(x)

and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Remark. If it turns out that the quotient f ′(x)
g′(x)

is again indeterminate, then L’Hôpital’s Rule can
be applied a second, a third, etc, time and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= lim

x→a

f ′′(x)

g′′(x)
.

Example 3.7.2. Compute the limit limx→0
cosx−1

x2 .

Solution. The quotient has the indeterminate form 0
0
, and so

lim
x→0

cos x− 1

x2
= lim

x→0

− sin x

2x
= lim

x→0

− cos x

2
=

−1

2
.

Remark. Suppose that f and g are defined on the set R− [−σ, σ] and g′(x) ̸= 0, x ∈ R− [−σ, σ]
(σ > 0). Assume that the limit

lim
x→∞

f(x)

g(x)
..................................(⋆)

exists. Then the functions g1(t) = g(1
t
) = g(x) and f1(t) = f(1

t
) = f(x) (where t = 1

x
) are defined

and differentiable on −1
δ
< t < 1

δ
(t ̸= 0).

Besides, the derivative g′1(t) ̸= 0 in the deleted 1
δ
-neighborhood of the point t = 0 takes the form

g′1(t) = g′(
1

t
)(− 1

t2
) = g′(x)(−x2) ̸= 0.
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On the other hand, the existence of the limit (⋆) implies the following limit exists

lim
t→0

f ′
1(t)

g′1(t)
= lim

t→0

f ′
1(

1
t
)

g′1(
1
t
)
= lim

x→∞

f ′(x)

g′(x)
......(⋆⋆)

Therefore by the theorem, the limit

lim
t→0

f1(t)

g1(t)
= lim

x→∞

f(x)

g(x)

exists and

lim
x→∞

f(x)

g(x)
= lim

t→0

f1(t)

g1(t)
= lim

t→0

f ′
1(t)

g′1(t)
= lim

x→∞

f ′(x)

g′(x)
.

Example 3.7.3. Find limx→0
x2

ln(1+x2)

Solution. This is an indeterminate form 0
0
. By the theorem we have

lim
x→0+

x2

ln(1 + x2)
= lim

x→0+

2x
1

1+x2

= lim
x→0+

2x(1 + x2) = 0.

Example 3.7.4. Find limx→∞ x ln(1 + 1
x
).

Solution. Obviously,

lim
x→∞

x ln(1 +
1

x
) = lim

x→∞

ln(1 + 1
x
)

1
x

= lim
x→∞

− 1
x(x+1)

− 1
x2

= lim
x→∞

x

x+ 1
= 1.

3.7.2 L’Hôpital’s Second Rule for the Indeterminate form ∞
∞

Recall that if two functions f and g are defined in a neighborhood of a pointx = a, such that
limx→a f(x) = ∞, limx→a g(x) = ∞, then we say that the quotient f(x)

g(x)
has the indeterminate

form ∞
∞ at x = a.

Theorem 3.7.5. (L’Hôpital’s Second Rule)Suppose that the functions f and g are differen-
tiable in a deleted σ− neighborhood (a− σ, a+ σ)− {a} (σ > 0) of a point a. Moreover, suppose
that

lim
x→a

f(x) = lim
x→a

g(x) = ∞,

and g′(x) ̸= 0 in the deleted neighborhood of a. Then if the limit limx→a
f ′(x)
g′(x)

.......(⋆⋆) exists, then

so does limx→a
f(x)
g(x)

and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Remark. If the limit (⋆⋆) becomes ∞, then so limx→a
g′(x)
f ′(x)

= 0, it follows that limx→a
g(x)
f(x)

= 0.
Hence, we have

lim
x→a

f(x)

g(x)
= ∞.

Example 3.7.6. Find limx→0+
√
x ln x.
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Solution. limx→0+
√
x lnx = limx→0+

lnx

x− 1
2
= limx→0+

1
x

(− 1
2
)x− 3

2
= −2 limx→0+

√
x = 0.

Example 3.7.7. Find limx→∞
lnx
x
.

Solution. limx→∞
lnx
x

= limx→∞
1
x

1
= limx→∞

1
x
= 0.

Example 3.7.8. Find limx→∞
xn

ex
.

Solution. limx→∞
xn

ex
= limx→∞

nxn−1

ex
= limx→∞

nxn−2

ex
= · · · = limx→∞

n!
ex

= 0.

3.7.3 Indeterminate forms 0.∞,∞−∞, 1∞, 00, 0∞,∞0

The indeterminate forms 0.∞,∞−∞, 1∞, 00,∞0 can be converted by algebraic substitutions and
tricks into a from of type 0

0
or ∞

∞ and L’Hôpital’s Rule used to compute them.
Suppose that we try to find the limit of y = f(x)g(x) where g(x > 0), when the limits of f and
g as x → a are such that one of the indeterminate forms 1∞, 00, 0∞,∞0 is produced. First, we
calculate the logarithm:

ln y = g(x) ln f(x).

For each of these three cases, ln y = g(x) ln f(x) has the form 0.∞ as x → a. Thus, it is easy to
see that if

z = p(x)q(x), .........(⋆)

where limx→a p(x) = 0, limx→a q(x) = ∞,
the indeterminate form 0.∞ can be converted by algebraic substitutions into either the form 0

0
or

∞
∞ .
Expressing (⋆) in the form

z =
p(x)

1
q(x)

.......(⋆⋆)

or

z =
q(x)

1
p(x)

.......(⋆ ⋆ ⋆)

we see that (⋆⋆) and (⋆ ⋆ ⋆) have the indeterminate forms 0
0
and ∞

∞ , respectively.

Example 3.7.9. Find limx→0 x
x.

Solution. This is of indeterminate form 00. Let y = xx. Then ln y = x ln x = lnx
1
x

, and by passing

to the limit as x → 0, we have

lim
x→0

x ln x = lim
x→0

ln x
1
x

= lim
x→0

1
x

− 1
x2

= − lim
x→0

x = 0.

Therefore ln limx→0 y = 0, and so limx→0 x
x = e0 = 1.
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Example 3.7.10. Find limx→0(1 + x2)
1
x2 .

Solution. This is of indeterminate form 1∞. Let y = (1 + x2)
1
x2 . Then ln y = 1

x2 ln(1 + x2), and
by passing to the limit as x → 0 we have

lim
x→0

1

x2
ln(1 + x2) = lim

x→0

ln(1 + x2)

x2
= lim

x→0

( 1
1+x2 )(2x)

2x
= lim

x→0

1

1 + x2
= 1.

Therefore ln limx→0 y = 1, and so limx→0(1 + x2)
1
x2 = e.

Exercises. 1. Use L’Hôpital’s Rule to find the limits

(a). limx→0
tanx−x
x−sinx

, Ans. 2

(b). limx→0
sin ax
sin bx

, Ans. a
b
.

(c). limx→π
4

3√tanx−1
2 sin2 x−1

, Ans. 1
3
.

(d). limx→π
4
(tanx)tan 2x, Ans. 1

e
.

(e). limx→0
ln(cos ax)
ln(cos bx)

, Ans. (a
b
)2.

(f). limx→a
ax−xa

x−a
(a > 0), Ans. aa(ln a− 1).

3.8 Differentiation of Implicit and Parametric Functions

In this section we consider functions defined implicitly and functions defined parametrically.

3.8.1 Implicit Differentiation

Sometimes we are not given y as a function of x explicitly, but instead have an equation connecting
them which we may be unable to solve explicitly for either x or y. We may still want to find dy

dx
.

Example 3.8.1. Find dy
dx

if y2 = x.

Solution. We differentiate both sides of the equation with respect to x, treating y as a differen-
tiable but otherwise unknown function of x. Therefore

y2 = x

2y dy
dx

= 1 (Chain Rule)

dy
dx

= 1
2y

Example 3.8.2. Find the gradient dy
dx

at the point (1,2) on the curve whose equation is x3 −
5xy2 + y3 + 11 = 0.
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Solution. We can not find y(x) explicitly in terms of x. We therefore have to use the Chain Rule
to differentiate the y2 and y3 terms and the product rule for the second term involving x and y.
Differentiating with respect to x, we have

3x2 − 5(x.2y
dy

dx
+ y2) + 3y2

dy

dx
= 0

Rearranging this gives

(3y2 − 10xy)
dy

dx
= 5y2 − 3x2,

and therefore
dy

dx
=

5y2 − 3x2

3y2 − 10xy
.

The gradient at the point (1,2) is then found by substituting these values for x and y the expres-
sion, giving −17

8
.

Example 3.8.3. Find d2y
dx2 if 2x3 − 3y2 = 7.

Solution. We differentiate both sides with respect to x to find y′ = dy
dx
:

2x3 − 3y2 = 7

d
dx
(2x3)− d

dx
(3y2) = d

dx
(7)

6x2 − 6yy′ = 0

x2 − yy′ = 0

y′ = x2

y
(when y ̸= 0).

We now apply the Quotient Rule to find y′′:

y′′ =
d

dx
(
x2

y
) =

2xy − x2y′

y2
=

2x

y
− x2

y2
y′.

Finally, we substitute y′ = x2

y
to express y′′ in terms of x and y:

y′′ =
2x

y
− x2

y2
(
x2

y
) =

2x

y
− x4y3.

3.8.2 Logarithmic Differentiation

This is an application of implicit differentiation.

Example 3.8.4. Differentiate y = xsinx.

Solution. We take logarithms of both sides of the equation to give

ln y = ln(xsinx) = sin x ln x.
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We deal with the LHS using implicit differentiation, and the RHS using the product rule. This
gives

1

y

dy

dx
= cos x. ln x+ sin x.(

1

x
).

Therefore
dy

dx
= y(cosx. ln x+ sinx).

3.8.3 Parametric Differentiation

Equations of curves are often given parametrically. For example the ellipse is sometimes specified
by

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π.

We want to find dy
dx
(the gradient), but the parametric equations can only be differentiated with

respect to t. We can approach this in two ways.
Firstly, we can use the Chain Rule to give

dy

dt
=

dy

dx

dx

dt
,

so
dy

dx
=

dy
dt
dx
dt

,

provided dx
dt

̸= 0.

Example 3.8.5. Find the gradient at an arbitrary point t on the ellipse specified by x = a cos t, y =
b sin t, 0 ≤ t ≤ 2π.

Solution. The gradient is given by

dy

dx
=

dy
dt
dx
dt

=
b cos t

−a sin t
= − b

a
cot t.

Note that here sin t ̸= 0, and thus t excludes the points 0,±π,±2π, ..., where the tangent to the
ellipse is parallel to the y-axis.

Example 3.8.6. Find dy
dx

given that x = t2, y = t3.

Solution. These are parametric equations of a curve known as a semicubical parabola. The
derivative is given

dy

dx
=

dy
dt
dx
dt

=
3t2

2t
=

3t

2
(t ̸= 0).

We can also eliminate the parameter t to give y3 = x3, and so we could also find the derivative
using implicit differentiation, as follows

2y
dy

dx
= 3x2,

and so, dy
dx

= 3x2

2y
, (y ̸= 0).
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Example 3.8.7. Given x = a cos t, y = b sin t, 0 ≤ t ≤ 2π, find d2y
dx2 .

Solution. It is possible to find a general formula for the second derivative. We write

d2y

dx2
=

dY

dx
,

where Y = dy
dx
. Applying parametric differentiation formula to Y gives

dY

dx
=

dY
dt
dx
dt

.

Thus
d2y

dx2
=

dY

dt
=

dY
dt
dx
dt

=
−b
a
csc2 t

−a sin t
= − b

a2 sin3 t
,

provided that sin t ̸= 0.

Caution. A common mistake is to try to find d2y
dx2 by differentiating the formula obtained for

dy
dx

with respect to x. This WRONG!

3.8.4 Differentiating Inverse Functions using Implicit Differentiation

Example 3.8.8. Find the derivative of y = sinh−1 x.

Solution. Suppose that y = sinh−1 x, so that x = sinh y. Differentiating with respect to x gives

1 = cosh y
dy

dx
,

so that
dy

dx
=

1

cosh y
.

We want the answer in terms of x, so we have to find cosh y in terms of x = sinh y. Using the
hyperbolic identity

cosh2 y − sinh2 y = 1,

gives

cosh y =

√
1 + sinh2 y,

where we use the positive square root because cosh y is always positive. Therefore

dy

dx
=

1

cosh y
=

1√
1 + sinh2 y

=
1√

1 + x2
.

Exercise. Use implicit differentiation to verify the derivatives of inverse trigonometric and hy-
perbolic functions proved earlier.
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3.9 Linear Approximations and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the accuracy
we want for specific applications.

3.9.1 Differentials

The Newton quotient ∆y
∆x

is a quotient of two quantities ∆y and ∆x. If y is a continuous function

of x, then ∆y → 0 as ∆x → 0, so dy
dx

is the meaningless quantity 0
0
. We refer to dx as the

differential of x and dy as the differential of y as a function of x and dx:

dy =
dy

dx
dx = f ′(x)dx.

For example, if y = x2, then dy = 2xdx.

Remark. The differentials dy and dx were originally regarded (by Leibniz and his successors as
”infinitesimals”(meaning infinitely small but nonzero)). If one quantity, say y, is a function of
another quantity x, that is, y = f(x), we sometimes want to know how a change in the value of x
by an amount ∆x will affect the value of y. The exact change ∆x in y is given by

∆y = f(x+∆x)− f(x),

but if the change ∆x is small, then we can get a good approximation to ∆y by using the fact that
∆y
∆x

is approximately the derivative dy
dx
. Thus

∆y =
∆y

∆x
∆x ≈ dy

dx
∆x = f ′(x)∆x.

It is often convenient to represent this approximation in terms of differentials; if we denote the
change in x by dx instead of ∆x, then the change ∆y in y is approximated by the differential dy,
that is

∆y ≈ dy = f ′(x)dx.

Example 3.9.1. Without using a calculator, determine by approximately how much the value
of sin x increases as x increases from π

3
to π

3
+ 0.006. To 3 decimal places, what is the value of

sin(π
3
+ 0.006)?

Solution. If y = sin x, x = π
3
≈ 1.0472, and dx = 0.006, then

dy = cos xdx = cos(
π

3
)dx =

1

2
(0.006) = 0.003.

Thus the change in the value of sinx is approximately 0.003, and

sin(
π

3
+ 0.006) ≈ sin(

π

3
) + 0.003 =

√
3

2
+ 0.003 = 0.869,

rounded to 3 decimal places.
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Sometimes changes in a quantity are measured with respect to the size of the quantity. The
relative change in x is the ratio dx

x
if x changes by amount dx. The percentage change in x is the

relative change expressed as a percentage:

relative change in x =
dx

x

percentage relative change in x = 100
dx

x

Example 3.9.2. By approximately what percentage does the area of a circle increase if the radius
increases by 2%?

Solution. The area A os a circle is given in terms of radius r by A = πr2. Thus

∆A ≈ dA =
dA

dr
dr = 2πrdr.

We divide this approximation by A = πr2 to get an approximation that links the relative changes
in A and r:

∆A

A
≈ dA

A
=

2πrdr

πr2
= 2

dr

r
.

If r increases by 2%, then dr = 2
100

r, so

∆A

A
≈ 2

2

100
=

4

100
.

Thus, A increases by approximately 4%.

3.9.2 Linearizations are Linear Replacement Formulas

Remark. The tangent to a curve y = f(x) lies close to the curve near the point of tangency. For
a small interval to either side, the y-values along the tangent line give good approximations to the
y-values on the curve. Therefore, to simplify the expression for the function near this point, we
propose to replace the formula for f over this interval by the formula for its tangent line. If the
tangent passes through the point P (a, f(a)) with slope f ′(a), then its point-slope equation is

y − f(a) = f ′(a)(x− a)

or

y = f(a) + f ′(a)(x− a).

, the tangent line is the graph of the function

L(x) = f(a) + f ′(a)(x− a)..........(⋆)

For as long as the line remains close to the graph of f , L(x) will give a good approximation to f(x).

Example 3.9.3. Find the linearization of f(x) =
√
1 + x at x = 0.
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Solution. We evaluate (⋆) for f(x) =
√
1 + x and a = 0. The derivative of f(x) = 1

2
(1 + x)−

1
2 =

1
2
√
1+x

. Its value at x = 0 is 1
2
. We substitute this along with a = 0 and f(0) = 1 into (⋆):

L(x) = f(a) + f ′(a)(x− a) = 1 +
1

2
(x− 0) = 1 +

x

2
.

Example 3.9.4. Find the linearization of f(x) = tanx.

Solution. f(x) = tanx, a = 0. Since f(0) = 0, f ′(0) = sec( 0) = 1, we have L(x) = 0+1(x−0) =
x. Near x = 0

tanx ≈ x.

Example 3.9.5. Use linear approximation formula to estimate
√
1.1.

Solution. Let f(x) =
√
x. Then we must compute f(1.1). By definition of derivative,

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
= lim

∆x→0

√
x+∆x−

√
x

∆x
= lim

∆x→0

∆x

∆x(
√
x+∆x+

√
x)

=
1

2
√
x
.

Setting x = 1, x+∆x = 1.1, it follows that

f(1.1) ≈ f(1) + f ′(1)(0.1)

or √
1.1 ≈

√
1 +

1

2
√
1
(0.1) = 1.05.

Consequently,
√
1.1 ≈ 1.05.

Example 3.9.6. Use linear approximation formula to estimate sin 46◦.

Solution. Let f(x) = sinx. Then we must compute f(46). Clearly, f ′(x) = cosx and by linear
approximation

sin(x+∆x) ≈ sin x+ cos x∆x.

We estimate the value of sin 46◦. Since x+∆x = π
4
+ π

180
(1◦ = π

180
radians), and x = π

4
, we have

sin 46◦ = sin(
π

4
+

π

180
) ≈ sin

π

4
+

π

180
cos

π

4
,

or

sin 46◦ ≈
√
2

2
+

√
2

2

π

180
= 0.7071 + 0.7071(0.0175) = 0.7194.

3.9.3 Average and Instantaneous Rates of Change

Definition 3.9.7. The average rate of change of a function f(x) with respect to x over an
interval from a to a+ h is

f(a+ h)− f(a)

h
.

The (instantaneous) rate of change of f with respect to x at x = a is the derivative

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

provided the limit exists.
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Example 3.9.8. How fast is area A of a circle increasing with respect to its radius when the
radius is 5 m?

Solution. The rate of change of the area with respect to the radius is

dA

dr
=

d

dr
(πr2) = 2πr.

When r = 5 m, the area is changing at the rate of 2π(5) = 10π m2/min. This means that a small
change ∆r m in the radius when the radius is 5 m would result in a change of about 10π m2 in
the area of the circle.

3.10 Exercises

1.(a). Use First Principles to find dy
dx

for each of the following functions.

(i). y = f(x) = x2.

(ii). y = cos(2x).

(iii). y = 1
2x
.

(iv). y = 2−x
2+x

.

(v). y = eαx.

(vi). y = loga x.

Solution(vi). Let y = loga x. Then y +△y = loga(a+△x). Thus

△y = loga(x+△x)− loga x = loga
x+△x

x
= loga(1 +

△x

x
).

Therefore

△y

△x
=

1

△x
loga(1 +

△x

x
) =

1

x

x

△x
loga(1 +

△x

x
) =

1

x
loga(1 +

△x

x
)

x
△x

and
dy

dx
=

1

x
lim

△x→0
loga(1 +

△x

x
)

x
△x =

1

x
loga

[
lim

△x→0
(1 +

△x

x
)

x
△x )

]
=

1

x
loga e.

When a = e, loga e = loge e = 1 and d
dx
(lnx) = 1

x
.

(b). Find the derivatives of

(i). y = 1−x2

1+x2 .
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(ii). y = (2 + 3
t
)−10.

(iii). y =
√
x
√
x.

(iv). y = xsin(x).

(v). y = sec(2x3 + 1).

(vi). y = ax.

Solution. Let y = ax. Then ln y = x ln a and d
dx
(ln y) = 1

y
dy
dx

= ln a. Thus dy
dx

= y ln a = ax ln a.

When a = e, ln a = ln e = 1 and we have d
dx
(ex) = ex.

(c). Show that the derivative of y = f(x) = |x| does not exist at x = 0.

Solution. This function is continuous at all values of x. For x < 0, f(x) = −x and

f ′(x) = limh→0 − (x+h)−(−x)
h

= −1; for x > 0, f(x) = x and f ′(x) = 1.

At x = 0, f(x) = 0 and limh→0
f(0+h)−f(0)

h
= limh→0

|h|
h
. As h → 0−, |h|

h
→ −1; but as

h → 0+, |h|
h
→ 1.

Hence the derivative does not exist.

2.(a). Find dy
dx

in each case.

(i). x3 − xy + y3 = 1.

(ii). x2y + xy2 = 6.

(iii). y3 + y = 2 cosx at the point (0, 1).

(iv). y = ln(x2 + 3x+ 1).

(v). y = ln( x
2+1

x3−x
).

(b). Find the tangent line to the curve

(i). x3 + y2 = 2 at the point (1, 1). Solution: y = −3
2
x+ 5

2

(ii). x
3
2 + 2y

3
2 = 17. Solution: y = −1

4
+ 17

4

(iii). x3y3 + y2 = x+ y at the point (1, 1).

(iv). x+
√
xy = 6 at the point (4, 1).

(c).(i). Given that xy + x− 2y − 1 = 0, find dy
dx

and d2y
dx2 .
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(ii). If y = ln(x+
√
1 + x2), show that y′ = 1√

1+x2 .

3.(a). If x = cos(2t− 1) and y = sin(3t+ 1), find dy
dx
.

(b). Find dy
dx

if y = xxx
.

4. Suppose that the temperature at a certain location t hours after noon on a certain day is T ◦C,
where T = 1

3
t3 − 3t2 + 8t + 10 (for 0 ≤ t ≤ 5). How fast is the temperature rising or falling at

1 : 00 pm? at 3 : 00 pm? At what instants is the temperature stationary?

Solution. The rate of change of the temperature is dT
dt

= t2 − 6t+ 8 = (t− 2)(t− 4).

• If t = 1, then dT
dt

= 3, so the temperature is rising at the rate of 3 degrees C/h at 1 : 00pm.

• If t = 3, then dT
dt

= −1, so the temperature is falling at the rate of 1 degree C/h at 3 : 00pm.

• The temperature is stationary when dT
dt

= 0, that is, at 2 : 00 pm and 4 : 00 pm.

5.(a). If z = tan x
2
, then show that dx

dz
= 2

1+z2
, sin x = 2z

1+z2
and cosx = 1−z2

1+z2
.

(b). Find the linearization of the given function at the given point.

(i). y = x2 about x = 3.

(ii). y =
√
4− x about x = 0.

(iii). y = sin x about x = π.

(c).(i). By approximately how much does the area of a square increase if its side length increases
from 10 cm to 10.4 cm?

(ii). By about how much must the length of a cube decrease from 20 cm to reduce the volume
of the cube by 12 cm3?
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Chapter 4

ANTI-DERIVATIVES OF
FUNCTIONS AND APPLICATIONS
TO AREAS

Throughout Chapter 3 we have been concerned with the problem of finding the derivative f ′ of
a given function f . The reverse problem-given the derivative f ′, find f -is also interesting and
important. It is the problem studied in integral calculus and is generally more difficult to solve
than the problem of finding a derivative.

4.1 Anti-Derivatives

We begin by defining an anti derivative of a function f to be a function F whose derivative is f .
It is appropriate to require that F ′(x) = f(x) on an interval.

Definition 4.1.1. An antiderivative of a function f on an interval I is another function F
satisfying F ′(x) = f(x) for x in I. The reverse process of determining F from f is called anti-
differentiation or integration.

Remark. Antiderivatives are not unique; indeed, if C is any constant, then F (x) = x+ is an
antiderivative of f(x) = 1 on any interval. You can always add a constant to an antiderivative
F of a function f on an interval and get another antiderivative of f . More importantly, all
antiderivatives of f on an interval can be obtained by adding constants to any particular one. If
F and G are both antiderivatives of I on an interval I, then

d

dx
(G(x) + F (x)) = f(x)− f(x) = 0,

on I, so G(x)− F (x) = C (a constant) on I. Thus G(x) = F (x) + C on I.

4.1.1 Indefinite Integral of a Function

Example 4.1.2. If f(x) is a derivative, the set of all antiderivatives of f is called the indefinite
integral of f , denoted by the symbols ∫

f(x)dx.

55



56 CHAPTER 4. ANTI-DERIVATIVES OF FUNCTIONS AND APPLICATIONS TO AREAS

The sign
∫

is called an integral sign. The function f is the integrand of the integral and x is
the variable of integration.

Remark. We have already seen that all the anti-derivatives F of f differ by a constant. We
indicate this by writing ∫

f(x)dx = F (x) + C. (⋆)

The constant C is called the constant of integration. Equation (⋆) is read as ”The indefinite
integral of f with respect to x is F (x) + C”. When we find F (x) + C, we say that we have eval-
uated the indefinite integral.

Example 4.1.3.

Function f(x) antiderivative Reversed derivative formula

cos x sin x+ C d
dx

sin x = cos x

sin x − cos x+ C d
dx
(− cos x) = sinx

3x2 x3 + C d
dx
x3 = 3x2

1
2
√
x

√
x+ C d

dx

√
x = 1

2
√
x

1
x2 − 1

x
+ C d

dx
(− 1

x
) = 1

x2

Example 4.1.4. Evaluate
∫
(x2 − 2x+ 5)dx

Solution. ∫
(x2 − 2x+ 5)dx =

An antiderivative of f(x)=x2−2x+5︷ ︸︸ ︷
x3

3
− x2 + 5x +C.

Remark. To evaluate
∫
f(x)dx, find an antiderivative F (x) of f(x) and then add a constant C.

4.1.2 Integration Formulas

1.
∫
xndx = xn+1

n+1
+ C (n ̸= −1) (Power Rule)

2.
∫
sin kxdx = − cos kx

k
+ C (Chain Rule)

3.
∫
cos kxdx = sin kx

k
+ C (Chain Rule)

4.
∫
sec2 xdx = tanx+ C

5.
∫
sec x tanxdx = sec x+ C

6.
∫
cscx dx = − cotx+ C

7.
∫
csc x cotxdx = −cscx+ C

Example 4.1.5. a).
∫
x5dx = x6

6
+ C
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b).
∫
sin 2xdx = − cos 2x

2
+ C

c).
∫
cos x

2
dx =

∫
cos 1

2
x =

sin 1
2
x

1
2

+C=2sin x
2
+ C

Example 4.1.6.
∫
x cos xdx = x sin x+ cosx+ C

Reason: The derivative of the right-hand side is the integrand:

d

dx
(x sin x+ cos x+ C) = x cosx+ sin x− sin x+ 0 = x cos x.

4.1.3 Rules for Indefinite Integrals

1.
∫

dF
dx
dx = F (x) + C

2. d
dx

∫
f(x)dx = f(x)

3.
∫
kf(x)dx = k

∫
f(x)dx (k a constant)

4.
∫
−f(x)dx = −

∫
f(x)

5.
∫
[f(x)± g(x)]dx =

∫
f(x)dx±

∫
g(x)dx

4.2 Techniques of Integration

This section is completely concerned with how to evaluate integrals.

4.2.1 Integration by Substitution

A change of variable can often turn an unfamiliar integral into one we can evaluate. The method
of doing this is called the Substitution Method.

Example 4.2.1. Evaluate
∫
(x+ 2)5dx

Solution. Let u = x+ 2. Then du = dx. Therefore∫
(x+ 2)5dx =

∫
u5du =

u6

6
+ C =

(x+ 2)6

6
+ C.

Example 4.2.2. Evaluate
∫ √

4x− 1dx

Solution. Let u = 4x− 1. Then du = 4dx or dx = 1
4
du. Thus∫ √

4x− 1dx =
1

4

∫
u

1
2du =

1

4

u
3
2

3
2

+ C =
1

6
u

3
2 + C =

1

6
(4x− 1)

3
2 + C.
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Example 4.2.3. Evaluate
∫
cos(7x+ 5)dx

Solution. Let u = 7x+ 5. Then du = 7dx or dx = 1
7
du. Thus∫

cos(7x+ 5)dx =
1

7
cosudu =

1

7
sin u+ C =

1

7
sin(7x+ 5) + C.

Example 4.2.4. Evaluate
∫
x2 sin(x3)dx.

Solution. Let u = x3. Then du = 3x2dx or x2dx = 1
3
du. Thus∫

x2 sin(x3)dx =

∫
sin u.

1

3
du =

1

3

∫
sinudu =

1

3
(− cosu) + C = −1

3
cos(x3) + C.

Example 4.2.5. Evaluate
∫

1
cos2 2x

dx.

Solution. Note that sec 2x = 1
2x
. Let u = 2x. Then du = 2dx or dx = 1

2
du. Thus∫

1

cos2 2x
dx =

∫
sec2 2xdx =

∫
sec2 u.

1

2
du =

1

2

∫
sec2 udu =

1

2
tanu+ C =

1

2
tan 2x+ C.

Example 4.2.6. Evaluate
∫
sin4 x cosxdx.

Solution. Let u = sin x. Then du = cos xdx or cos xdx = du. Thus∫
sin4 x cos xdx =

∫
u4du =

u5

5
+ C =

sin5 x

5
+ C.

4.2.2 Integration by Parts

Our next general method for anti-differentiation is called Integration by Parts . Just as the
method of substitution can be regarded as inverse to the Chain Rule for differentiation, so the
method for integration by parts is inverse to the Product Rule for differentiation. Suppose that
U(x) and V (x) are two differentiable functions. According to the Product Rule,

d

dx

(
U(x).V (x)

)
= U(x)

dV

dx
+ V (x)

dU

dx
.

Integrating both sides of this equation and transposing terms yields∫
U(x)

dV

dx
dx = U(x)V (x)−

∫
V (x)

dU

dx
dx,

or more simply, ∫
UdV = UV −

∫
V dU.

In each application of the method, we break up the given integrand into a product of two
pieces, U and V ′, where V ′ is readily integrated and where

∫
V U ′dx is usually (but not always)

a simpler integral than
∫
UV ′dx. The technique is called integration by parts because it replaces

one integral with the sum of an integrated term and another integral that remains to be evaluated.
That is, it accomplishes only part of the original integration.
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Example 4.2.7. Evaluate
∫
xexdx.

Solution. Let U = x, dv = exdx. Then dU = dx and V = ex. Thus∫
xexdx = xex −

∫
exdx = xex − ex + C.

Note: In general, do not include a constant of integration with V or on the right-hand side until
the last integral has been evaluated.
Choices should be made for U and dV in various situations. An improper choice can result in
making an integral more difficult rather than easier. Look for a factor of the integrand that is
easily integrated, and include dx with that factor to make up dV . Then V is the remaining factor
of the integrand. Sometimes it is necessary to take dV = dx only. When breaking up an integrand
using integration by parts, choose U and dV so that, if possible, V dU is ”simpler” (easier to
integrate) than UdV .

Example 4.2.8. Use integration by parts to evaluate:
a).

∫
ln xdx b).

∫
x2 sin xdx c).

∫
x tan−1 xdx d).

∫
sin−1 xdx

Solution.
a). Let U = lnx, dV = dx. Then dU = dx

x
, V = x. Thus∫

ln xdx = x ln x−
∫

x
1

x
dx = x ln x− x+ C.

b). We apply integration by parts method twice: let U = x2, dV = sin xdx. Then dU = 2xdx, V =
− cos x. Thus ∫

x2 sinxdx = −x2 cos x+ 2

∫
x cos xdx.

Now, let U = x, dV = cos xdx. Then dU = dx, V = sin x. Thus∫
x2 sinxdx = −x2 cos x+ 2

∫
x cosxdx = −x2 cos x+ 2(x sinx−

∫
sin xdx)

= −x2 cosx+ 2x sin x+ 2 cosx+ C.

c). Let U = tan−1 x, dV = xdx. Then dU = dx
1+x2 , V = 1

2
x2. Thus∫

x tan−1 xdx =
1

2
x2 tan−1 x− 1

2

∫
x2

1 + x2
dx =

1

2
x2 tan−1 x− 1

2

∫
(1− 1

1 + x2
)dx

=
1

2
x2 tan−1 x− 1

2
x+

1

2
tan−1 x+ C.

d). Let U = sin−1 x, dV = dx. Then dU = dx√
1−x2 , V = x. Thus∫

sin−1 xdx = x sin−1 x−
∫

x√
1− x2

dx.

Now we use integration by substitution. Let u = 1− x2. Then du = −2xdx Thus∫
sin−1 xdx = x sin−1 x−

∫
x√

1− x2
dx = x sin−1 x+

1

2

∫
u− 1

2du = x sin−1 x+ u
1
2 + C
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= x sin−1 x+
√
1− x2 + C.

Remark. The following are two useful rules of thumb for choosing U and dV :

(i) If the integrand involves a polynomial multiplied by an exponential, a sine or a cosine, or
some other readily integrable function, try U equals the polynomial and dV equals the rest.

(ii) If the integrand involves a logarithm, an inverse trigonometric function, or some other
function that is not readily integrable but whose derivative is readily calculated, try that function
for U and let d V equal the rest.
(Of course, these ”rules” come with no guarantee. They may fail to be helpful if ”the rest” is
not of a suitable form. There remain many functions that cannot be anti-differentiated by any
standard techniques; e.g., ex

2
.)

The following two examples illustrate a frequently occurring and very useful phenomenon. It
may happen after one or two integrations by parts, with the possible application of some known
identity, that the original integral reappears on the right-hand side. Unless its coefficient there is
1, we have an equation that can be solved for that integral.

Example 4.2.9. Evaluate I =
∫
sec3 xdx

Solution. We start by integrating by parts: let U = sec x, dV = sec2 xdx. Then dU =
sec x tanxdx, V = tanx. Thus

I =

∫
sec3 xdx = sec x tanx−

∫
sec x tan2 xdx = sec x tanx−

∫
sec x(secx − 1)dx

= sec x tanx−
∫

sec3 xdx−
∫

sec xdx = sec x tanx− I + ln | sec x+ tanx|.

Solving for I, we have∫
sec3 xdx = I =

1

2
sec x tanx+

1

2
ln | sec x+ tanx|+ C.

Example 4.2.10. Evaluate I =
∫
eax cos bxdx

Solution. If either a = 0 or b = 0, the integral is easy to evaluate. So let us assume that a ̸= 0
and b ̸= 0. Let U = eax, dV = cos bxdx. Then dU = aeaxdx, V = 1

b
sin bx. Thus

I =

∫
eax cos bxdx =

1

b
eax sin bx− a

b

∫
eax sin bxdx.

Now, let U = eax, dv = sin bxdx. Then dU = aeaxdx, V = − cos bx
b

. Thus

I =

∫
eax cos bxdx =

1

b
eax sin bx−a

b

(
−1

b
eax cos bx+

a

b

∫
eax cos bxdx

)
=

1

b
eax sin bx+

a

b2
eax cos bx−a2

b2
I.

Thus

(1 +
a2

b2
)I =

1

b
eax sin bx+

a

b2
eax cos bx+ C1.

Hence ∫
eax cos bxdx = I =

beax sin bx+ aeax cos bx

a2 + b2
+ C.
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4.2.3 Integration of Rational Functions

In this subsection we are concerned with integrals of the form∫
P (x)

Q(x)
dx,

where P and Q are polynomials in x. We need normally concern ourselves only with rational
functions P (x)

Q(x)
where the degree of P is less than that of Q. If the degree of P equals or exceeds

the degree of Q, then we can use ”long division” to express the fractionP (x)
Q(x)

as a polynomial

plus another fraction R(x)
Q(x)

, where R, the remainder in the division, has degree less than that of Q.

Without loss of generality(WLOG), we will also consider the case where P (x) and Q(x) has no
common roots.

Definition 4.2.11. If the degree of the numerator P (x) is less than that of the denominator Q(x),

then we say that the rational function P (x)
Q(x)

is a proper function.

Example 4.2.12. Evaluate
∫

x3+3x2

x2+1
dx

Solution. The numerator has degree 3 and the denominator has degree 2, so we use long division
to get

x3 + 3x2

x2 + 1
= x+ 3− x+ 3

x2 + 1
.

Thus∫
x3 + 3x2

x2 + 1
dx =

∫
(x+3)dx−

∫
x

x2 + 1
dx−

∫
3

x2 + 1
dx =

1

2
x2+3x− 1

2
ln(x2+1)−3 tan−1 x+C.

beginexampleEvaluate
∫

x
2x−1

dx

Solution. The numerator and the denominator have the same degree 1, so division is again
required. We use a method called ”short division”:

x

2x− 1
=

1

2

2x

2x− 1
=

1

2

2x− 1 + 1

2X − 1
=

1

2
(1 +

1

2X − 1
).

Thus ∫
x

2x− 1
dx =

1

2

∫
(1 +

1

2x− 1
)dx =

x

2
+

1

4
ln |2x− 1|+ C.

Linear and Quadratic Denominators
• Suppose that Q(x) is linear. That is Q(x) = ax+ b. Then∫

c

ax+ b
dx =

c

a
ln |ax+ b|+ C.

• Suppose that Q(x) is quadratic,i.e. of degree 2. For purposes of this discussion we can assume
that Q(x) is either of the form x2+a2 or x2−a2, since completing the square and making change of
variable can always reduce a quadratic to this form. Since P (x) can be at most a linear function,
P (x) = Ax+B, we are led to consider the following four integrals
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∫
xdx

x2 + a2
,

∫
xdx

x2 − a2
,

∫
dx

x2 + a2
,

∫
dx

x2 − a2
.

The first two integrals yield to the substitution u = x2± a2. The third is a known integral. In the
fourth integral, notice that

1

x2 − a2
=

1

(x− a)(x+ a)
=

A

x− a
+

B

x+ a
.

That is Ax+Aa+Bx−Ba
x2−a2

= 1. Equating like coefficients of like terms we have

A+B = 0
Aa−Ba = 1

Solving, we have A = 1
2a
, B = − 1

2a
. Thus∫

dx

x2 − a2
=

1

2a

∫
dx

x− a
− 1

2a

∫
dx

x+ a
=

1

2a
ln |x− a| − 1

2a
ln |x+ a|+ C =

1

2a
ln |x− a

x+ a
|+ C.

In summary. we have: ∫
xdx

x2+a2
= 1

2
ln(x2 + a2) + C∫

xdx
x2−a2

= 1
2
ln(x2 − a2) + C∫

dx
x2+a2

= 1
a
tan−1 x+ C∫

dx
x2−a2

= 1
2a
ln |x−a

x+a
|+ C

The technique used above, involving the writing of a complicated fraction as a sum of simpler
fractions, is called the Method of Partial Fractions. Suppose that a polynomial Q(x) is of
degree n and that its highest degree term is xn (with coefficient 1). Suppose also that Q factors
into a product of n distinct linear (degree 1) factors, say,

Q(x) = (x− a1)(x− a2)...(x− an),

where ai ̸= aj if i ̸= j, 1 ≤ i, j ≤ n. If P (x) is a polynomial of degree smaller than n, then P (x)
Q(x)

has a partial fraction decomposition of the form

P (x)

Q(x)
=

A1

x− a1
+

A2

x− a2
+ · · ·+ An

x− an
,

where A1, A2, · · · , An are constants to be determined.

Example 4.2.13.
∫

x+4
x2−5x+6

dx

Solution. Note that

x+ 4

x2 − 5x+ 6
=

x+ 4

(x− 2)(x− 3)
=

A

x− 2
+

B

x− 3
.
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That is,
x+ 4 = Ax+Bx− 3A− 2B.

That is A+B = 1 and −3A− 2B = 4, and upon solving we have A = −6, B = 7. Thus∫
x+ 4

x2 − 5x+ 6
dx = −6

∫
1

x− 2
dx+ 7

∫
1

x− 3
dx = −6 ln |x− 2|+ 7 ln |x− 3|+ C.

Example 4.2.14.
∫

x3+2
x3−3

dx

Solution. The numerator and denominator have same degree, so we must divide:∫
x3 + 2

x3 − 3
dx =

∫
(1 +

x+ 2

x3 − x2
)dx = x+

∫
x+ 2

x3 − x2
dx.

Using the method of partial fractions, we have:

x+ 2

x3 − x2
=

x+ 2

x(x− 1)(x+ 1)
=

A

x
+

B

x− 1
+

C

x+ 1
.

Thus we have A+B + C = 0, B − C = 0,−A = 2, and thus A = −2, B = 3
2
and C = 1

2
. Thus∫

x3 + 2

x3 − 3
dx = x−2

∫
dx

x
+
3

2

∫
3

x− 1
dx+

1

2

∫
3

x+ 1
dx = x−2 ln |x|+3

2
ln |x−1|+1

2
ln |x+1|+C.

We next consider a rational function whose denominator has a quadratic factor that is a sum of
sqaures and cannot be further factored into a product of real linear factors.

Example 4.2.15. Evaluate
∫

2+3x+x2

x(x2+1)
dx

Solution. No division is required here since degree of numerator is less than degree of denominator.
The appropriate form of decomposition turns out to be

2 + 3x+ x2

x(x2 + 1)
=

A

x
+

Bx+ C

x2 + 1
.

Equating coefficients, we have A+B = 1, C = 3, A = 2. Hence A = 2, B = −1, and C = 3. Thus∫
2 + 3x+ x2

x(x2 + 1)
dx = 2

∫
1

x
dx−

∫
x

x2 + 1
dx+3

∫
1

x2 + 1
dx = 2 ln |x|− 1

2
ln(x2+1)+3 tan−1 x+C.

Completing the Square
Quadratic expressions of the form Ax2 +Bx+ C can be written as

Ax2 +Bx+ C = A(x2 + B
A
x+ C

A
)

= A(x2 + B
A
x+ B2

4A2 +
C
A
− B2

4A2 )

= A(x+ B
2A
)2 + 4AC−B2

4A

The substitution u = x+ B
2A

should then be made.

Example 4.2.16. EvaluateI =
∫

1
x3+1

dx
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Solution. Note that Q(x) = x3 +1 = (x+1)(x2 − x+1). The latter factor has no real roots and
hence has no real linear sub-factors. We have

1

x3 + 1
=

1

(x+ 1)(x2 − x+ 1)
=

x+ 1
+

Bx+ C

x2 − x+ 1
.

Equating coefficients we have A+B = 0,−A+B+C = 0, A+C = 1. Hence A = 1
3
, B = −1

3
, C = 2

3
.

We thus have

I =

∫
1

x3 + 1
dx =

1

3

∫
dx

x+ 1
− 1

3

∫
dx

x2 − x+ 1
=

1

3
ln |x+ 1| − 1

3

∫
dx

x2 − x+ 1
.

Completing squares, x2 − x+ 1 = (x− 1
2
)2 + 3

4
. Thus

I =

∫
1

x3 + 1
dx =

1

3
ln |x+ 1| − 1

3

∫
x− 1

2
− 3

2

(x− 1
2
)2 + 3

4

.

Now letting u = x− 1
2
, we have du = dx. Thus

I =

∫
1

x3 + 1
dx =

1

3
ln |x+ 1| − 1

3

∫
u

u2 + 3
4

+
1

2

∫
1

u2 + 3
4

= ln(u2 +
3

4
) +

1

2

2√
3
tan−1(

2u√
3
) + C =

1

3
ln |x+ 1| − 1

6
ln(x2 − x+ 1) +

1√
3
tan−1(

2x− 1√
3

) + C.

Denominators with Repeated Factors
We require one final refinement of the method of partial fractions. If any of the linear or quadratic
factors of Q(x) is repeated (say, m times), then the partial fraction decomposition of P (x)

Q(x)
requires

m distinct fractions corresponding to that factor. The denominators of these fractions have expo-
nents increasing from 1 to m, and the numerators are all constants where the repeated factor is
linear or linear where the repeated factor is quadratic.

Example 4.2.17. EvaluateI =
∫

1
x(x−1)2

dx

Solution. The appropriate partial fraction decomposition is

1

x(x− 1)2
=

A

x
+

B

x− 1
+

C

(x− 1)2
.

Equating coefficients of x2, x, and 1, we have

A+B = 0
−2A+B + C = 0

A = 1

Hence A = 1, B = −1, C = 1, and

I =

∫
1

x(x− 1)2
dx =

1

x
dx− 1

x− 1
dx+

1

(x− 1)2
dx = ln |x| − ln |x− 1| − 1

x− 1
+ C

= ln | x

x− 1
| − 1

x− 1
+ C.
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4.2.4 Inverse Substitutions

The Inverse Trigonometric Substitutions

Three very useful inverse substitutions are:

x = a sin θ, x = a tan θ, x = a sec θ.

These corresponds to the direct substitutions:

θ = sin−1 x

a
, θ = tan−1 x

a
, θ = sec−1 x

a
= cos−1 a

x
.

Inverse Sine Substitutions
Integrals involving

√
a2 − x2 where a > 0 can be reduced to a simpler form by means of the

substitution x = a sin θ. Observe that
√
a2 − x2 makes sense if −a ≤ x ≤ a, which corresponds to

−π
2
≤ θ ≤ π

2
. Since cos θ ≥ 0, for such θ we have

√
a2 − x2 =

√
a2(1− sin2 θ) =

√
a2 cos2 θ = a cos θ.

Therefore cos θ =
√
a2−x2

a
and tan θ = x√

a2−x2 .

Example 4.2.18. Evaluate
∫

1

(5−x2)
3
2
dx

Solution. Let x =
√
5 sin θ. Then dx =

√
5 cos θdθ. Thus

4

∫
1

(5− x2)
3
2

dx =

∫ √
5 cos θdθ

5
3
2 cos3 θ

=
1

5

∫
sec2 θdθ =

1

5
tan θ + C =

1

5

x√
5− x2

+ C.

Inverse Tangent Substitutions
Integrals involving

√
a2 + x2 or 1

x2+a2
(a > 0) are often simplified by the substitution x = a tan θ.

Since x can take any any real value, we have −π
2
≤ θ ≤ π

2
or sec θ > 0 and

√
a2 + x2 = a

√
1 + tan2 θ = a sec θ.

Therefore sin θ = x√
a2+x2 and cos θ = a√

a2+x2 .

Example 4.2.19. Evaluate
∫

1√
4+x2dx

Solution. Let x = 2 tan θ. Then dx = 2 sec2 θdθ. Thus∫
1√

4 + x2
dx =

∫
2 sec2 θ

2 sec θ
dθ =

∫
sec θ dθ = ln | sec θ + tan θ|+ C

= ln |
√
4 + x2

2
+

x

2
|+ C = ln(

√
4 + x2 + x) + C1,

where C1 = C − ln 2.
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Example 4.2.20. Evaluate
∫

1
(1+9x2)

dx

Solution. Let 3x = tan θ. Then 3dx = sec2 θdθ and 1 + 9x2 = secθ. Thus∫
1

(1 + 9x2)
dx =

1

3

∫
sec2 θdθ

sec4 θ
=

1

3

∫
cos2 θdθ =

1

6
(θ + sin θ cos θ) + C

=
1

6
tan−1 3x+

1

6

3x√
1 + 9x2

.
1√

1 + 9x2
+ C

=
1

6
tan−1 3x+

1

2
.

x

1 + 9x2
+ C.

Inverse Secant Substitutions
Integrals involving

√
x2 − a2 (where a > 0) can be simplified by using the substitution x = a sec θ.

But we must be careful with this substitution. Although
√
x2 − a2 = a

√
sec2 θ − 1 = a

√
tan2 θ =

a| tan θ|, we cannot always drop the absolute value from the tangent. Observe that
√
x2 − a2

makes sense for x ≥ a and for x ≤ −a.

• If x ≥ a, then 0 ≤ θ = sec−1 x
a
= cosa x < π

2
, and tan θ ≥ 0.

• If x ≤ −a, then π
2
< θ = sec−1 x

a
= cosa x ≤ π, and tan θ ≤ 0.

In the first case
√
x2 − a2 = a tan θ and in the second case

√
x2 − a2 = −a tan θ.

Example 4.2.21. Find I =
∫

dx√
x2−a2

Solution. Assume x ≥ a.
If x = sec θ, then dx = a sec θ tan θdθ and

√
x2 − a2 = a tan θ. Thus,

I =

∫
dx√

x2 − a2
=

∫
sec θdθ = ln | sec θ+tan θ|+C = ln |x

a
+

√
x2 − a2

a
|+C = ln |x+

√
x2 − a2|+C1,

where C1 = C − ln a.
If x ≤ −a, let u = −x so that u ≥ a and du = −dx. We have

I = −
∫

du√
u2 − a2

= − ln |u+
√
u2 − a2|+ C1 = ln | 1

−x+
√
x2 − a2

.
x+

√
x2 − a2

x+
√
x2 − a2

|+ C1

= ln |x+
√
x2 − a2

−a2
|+ C1 = ln |x+

√
x2 − a2|+ C2,

where C2 = C1 − 2 ln a. Thus, in either case, we have

I = ln |x+
√
x2 − a2|+ C.

Example 4.2.22. Find I =
∫

1√
2x−x2dx



4.2. TECHNIQUES OF INTEGRATION 67

Solution.

I =

∫
1√

2x− x2
dx =

∫
dx√

1− (1− 2x+ x2)
=

∫
dx√

1− (x− 1)2
.

Now, if we let u = x− 1, then du = dx. Thus

I =

∫
1√

2x− x2
dx =

∫
dx√

1− (x− 1)2
=

∫
du√
1− u2

= sin−1 u+ C = sin−1(x− 1) + C.

beginexampleFind I =
∫

x
4x2+12x+13

dx

Solution.

I =

∫
x

4x2 + 12x+ 13
dx =

∫
xdx

4(x2 + 3x+ 9
4
+ 1

=
1

4

∫
xdx

(x+ 3
2
)2 + 1

.

Let u = x+ 3
2
. Then du = dx. Thus

I =

∫
x

4x2 + 12x+ 13
dx =

∫
xdx

4(x2 + 3x+ 9
4
+ 1)

=
1

4

∫
xdx

(x+ 3
2
)2 + 1

=
1

4

∫
udu

u2 + 1
− 3

8

∫
du

u2 + 1
.

In the first integral, let v = u2 + 1, thus dv = 2udu. Therefore,

I =

∫
x

4x2 + 12x+ 13
dx =

1

4

∫
udu

u2 + 1
− 3

8

∫
du

u2 + 1
=

1

8

∫
dv

v
− 3

8
tan−1 u

=
1

8
ln |v| − 3

8
tan−1 u+ C =

1

8
ln(4x2 + 12x+ 13)− 3

8
tan−1(x+

3

2
) + C1,

where C1 = C − ln 4
8
.

4.2.5 Inverse Hyperbolic Substitutions

As an alternative to the inverse secant substitution x = a sec θ to simplify integrals involving√
x2 − a2 (where x ≥ a > 0) we can use the inverse hyperbolic cosine substitution x = a coshu.

Since cosh2 u− 1 = sinh2 u, this substitution produces
√
x2 − a2 = a sinhu. To express u in terms

of x, we need the result, note that

cosh−1 x = ln(x+
√
x2 − 1), x ≥ 1.

Example 4.2.23. Find I =
∫

dx√
x2−a2

, (where a > 0)

Solution. Note that this problem has been solved using the inverse secant substitution. Again
we assume x ≥ a(the case where x ≤ −1 can be handled similarly.) Using the substitution
x = a coshu, so that dx = a sinhudu, we have

I =

∫
dx√

x2 − a2
=

∫
a sinhu

a sinhu
du =

∫
du = u+ C = cosh−1 x

a
+ C = ln(

x

a
+

√
x2

a2
− 1 ) + C
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= ln(x+
√
x2 − a2) + C1,

where C1 = C − ln a.

Similarly, the inverse hyperbolic substitution x = a sinhu can be used instead of the inverse
tangent substitution x = a tan θ to simplify integrals involving

√
x2 + a2 or 1

x2+a2
. In this case, we

have dx = a coshudu and x2 + a2 = a2 cosh2 u, and we may need the result that

sinh2 x = ln(x+
√
x2 + 1),

which is valid for all x.

4.2.6 Other Inverse Substitutions

Integrals involving
√
ax+ b can be made simpler with the substitution ax+ b = u2.

Example 4.2.24. Find
∫

1
1+

√
2x
dx

Solution. Let 2x = u2. Then 2dx = 2udu. Thus∫
1

1 +
√
2x

dx =

∫
u

1 + u
du =

∫
1 + u− 1

1 + u
du =

∫
(1− 1

1 + u
)du.

Let v = 1 + u and hence dv = du. Thus∫
1

1 +
√
2x

dx =

∫
(1− 1

1 + u
)du = u−

∫
dv

v
= u− ln |v|+ C =

√
2x− ln(1 +

√
2x) + C.

Sometimes integrals involving n
√
ax+ b will be much simplified by the hybrid substitution ax+b =

un, adx = nun−1du.

Example 4.2.25. Find
∫

x
1+ 3√3x+2

dx

Solution. Let 3x+ 2 = u3. Then 3dx = 3u2du. Thus∫
x

1 + 3
√
3x+ 2

dx =

∫
u3 − 2

3u
u2du =

1

3

∫
(u4 − 2u)du =

1

3
(
u5

5
− u2) + C

=
1

3

(( 3
√
3x+ 2)5

5
− ( 3

√
3x+ 2)2

)
+ C.

If more than one fractional power is present, it may be possible to eliminate all of them at once.

Example 4.2.26. Evaluate
∫

1

x
1
2 (1+x)

1
3
dx

Solution. Eliminate both the square root and the cube root by using the inverse substitution
x = u6 (6 is chosen because it is the LCM of 2 and 3). Let x = u6. Then dx = 6u5du. Thus∫

1

x
1
2 (1 + x)

1
3

dx = 6

∫
u5du

u3(1 + u2)
= 6

∫
u2

1 + u2
du
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= 6

∫
(1− 1

1 + u2
)du = 6(u− tan−1 u) + C = 6(x

1
6 − tan−1 x

1
6 ) + C.

The tan( θ
2
) Substitution

There is a certain special substitution that can transform an integral whose integrand is a rational
function of sinθ and cosθ (i.e., a quotient of polynomials in sinθ and cosθ into a rational function
of x. The substitution is x = tan θ

2
or, equivalently, θ = 2 tan−1 x. Observe that

cos2
θ

2
=

1

sec2
θ

2
=

1

1 + tan2 θ
2

=
1

1 + x2
,

so

cos θ = 2 cos2
θ

2
− 1 =

2

1 + x2
− 1 =

1− x2

1 + x2

sin θ = 2 sin2 θ

2
cos

θ

2
= 2 tan

θ

2
cos2

θ

2
=

2x

1 + x2

Also dx = 1
2
sec2 θ

2
dθ, so

dθ = 2 cos2
θ

2
dx =

2dx

1 + x2
.

Example 4.2.27. Evaluate
∫

1
2+cos θdθ

Solution. Let x = tan θ
2
. Then cos θ = 1−x2

1+x2 and dθ = 2dx
1+x2 . Thus∫

1

2 + cos θ
dx =

∫ 2dx
1+x2

2 + 1−x2

1+x2

= 2

∫
1

3 + x3

=
2√
3
tan−1 x√

3
+ C =

2√
3
tan−1(

1

3
tan

θ

2
) + C.

Example 4.2.28. Evaluate
∫

dx
cosx

dx

Solution. Taking into account that cosx = 1−t2

1+t2
and dx = 2dt

1+t2
, we find that

∫
dx

cos x
dx =

∫ 2dt
1+t2

2 + 1−t2

1+t2

= 2

∫
dt

1 + t2
= ln |1 + t

1− t
|+ C = ln |

1 + tan x
2

1− tan x
2

|+ C.

4.3 The Definite Integral

The definite integral of f(x) over [a, b], denoted by
∫ b

a
f(x)dx is a number; it is not a function of

x. It depends on the numbers a and b and on the particular function f , but not on the variable
x. It is defined ∫ b

a

f(x)dx = [F (x) + C]|ba = F (b)− F (a), (⋆)

where F is an antiderivative of f .
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Definition 4.3.1. Let f(x) be a function whose domain contains the closed interval [a, b]. Suppose
F (x) is an antiderivative for f(x). Then the definite integral of f(x) from x = a to x = b, denoted
by

∫ n

a
f(x)dx is defined as∫ b

a

f(x)dx = [F (x) + C]|x=b
x=a = F (b)− F (a).

Here, a is called the lower bound/limit of integration and b is called the upper bound/limit
of integration.

Observe that the difference F (b)− F (a) does not depend on C, because

(F (b) + C)− (F (a) + C) = F (b)− F (a).

Formula (⋆) is called the Newton-Leibniz formula. Note that in (⋆) if a = b, then the integral
is zero. That is

∫ a

a
f(x)dx = 0.

The techniques of integration can be used to evaluate definite integrals.

4.3.1 Properties of the Definite Integral

1.
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx

2.
∫ b

a
kf(x)dx = k

∫ b

a
f(x)dx

3.
∫ b

a
[f(x) + g(x)]dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx

4.
∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx where c ∈ [a, b]

If a function F is an antiderivative of f on the half-interval [a,∞) and limx→∞ F (x) exists, then∫ ∞

a

f(x)dx = lim
x→∞

F (x)− F (a) = lim
x→∞

∫ x

a

f(t)dt.

Similarly ∫ ∞

−∞
f(x)dx =

∫ c

−∞
f(x)dx+

∫ ∞

c

f(x)dx.

Such integrals are called improper integrals.

Example 4.3.2. Find
∫ 1

0
dx√
1−x

Example 4.3.3. Solution. The integrand is not defined at x = 1, and so as an improper integral,
we can write ∫ 1

0

dx√
1− x

= lim
x→1−

∫ x

0

dt√
1− t

= lim
x→1−

(−2
√
1− x)− (−2) = 2.

Example 4.3.4. Find
∫∞
1

dx
x2

Example 4.3.5. Solution. The interval of integration is the infinite interval [0,∞).∫ ∞

1

dx

x2
= lim

x→∞

∫ ∞

1

dt

t2
= lim

x→∞
(−1

x
)− (−1) = 1.

Example 4.3.6. Evaluate
∫ 1

0
2x(x2 + 1)5dx
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Example 4.3.7. Solution:Method 1. Let u = x2 + 1, du = 2xdx. Then∫ 1

0

2x(x2 + 1)5dx =

∫
u5du =

u6

6
+ C =

x2 + 1

6
+ C.

Consequently, ∫ 1

0

2x(x2 + 1)5dx =
x2 + 1

6
|10 =

26

6
− 16

6
=

21

2
.

Method 2. Let u = x2 + 1, du = 2xdx; however, we also apply the substitution to the limits of
integration as well. When x = 0, we have u = 02+1 = 1; and when x = 1, we have u = 12+1 = 2.
Therefore ∫ 1

0

2x(x2 + 1)5dx =

∫ 2

1

u5du =
u6

6
|21 =

26

6
− 16

6
=

21

2
.

4.4 Applications of the Definite Integral

We give concepts of length, area and volume analytic definitions using the concept of the definite
integral.

4.4.1 Area and the Definite Integral

Area as a Limit
Let f be a continuous, positive valued function on [a, b] and suppose we want to compute the
area of f under the graph of f from x = a to x = b. We may approximate the area by partitioning
the region into n trapezia (subdivide [a, b] into n equal intervals each of length ∆x) and finding
the area of each trapezia and add the areas up.

A = lim
n→∞

(
n∑

i=1

f(xi)∆x),

where ∆x = b−a
n

and xi is the right-hand endpoint of the ith interval [xi−1, xi].
Note that the definite integral exists if the limit is a finite number. The actual area A is given by
the definite integral

A =

∫ b

a

f(x)dx. (⋆).

Note that the approximation to area approaches the actual area as n → ∞. Thus

A =

∫ b

a

f(x)dx = lim
n→∞

(
n∑

i=1

f(xi)∆x).

It can be shown that the partitioning points xi need not be equally spaced as long as the longest
interval nears zero as n increases without bound. The definite integral defined here is called a
Riemann integral.
If f(x) < 0 on [a, b], then the integral (⋆) is a non-positive number,−A. Since the area is nonneg-
ative, we define

A =

∫ b

a

|f(x)|dx.
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Let f1, f2 be continuous functions with f1(x) ≥ f(x2) for x ∈ [a, b]. Then the area A of the region
bounded by the curves y = f1(x) and y = f2(x) and the vertical lines x = a, x = b is

A =

∫ b

a

[f(x)− g(x)]dx (⋆⋆)

More generally, consider a continuous function f with a graph that crosses the x-axis at finitely
many points xi, i = 1, 2, ..., k between a and b. Then we write

A =

∫ b

a

f(x)dx =

∫ x1

a

f(x)dx+

∫
x1

ax2f(x)dx+ · · ·+
∫ b

xk

f(x)dx.

Hence, we see that
∫ b

a
f(x)dx is equal to the area under y = f(x) above the x-axis, minus the area

over y = f(x) below the x-axis.

Finally, let f1, f2 be continuous, with f1(y) ≥ f2(y) for y ∈ [c, d]. Then the area A of the region
bounded by the curves x = f1(y) and x = f2(y) and the vertical lines y = c and y = d is

A =

∫ d

c

[f1(y)− f2(y)]dy.

Example 4.4.1. Find the area A of the region bounded by the curves y = xα and x = yα.

Solution. The points of intersection of these curves are (0, 0) and (1, 1). Because x
1
α ≥ xα for all

xin [0, 1], it follows that

A =

∫ 1

0

(x
1
α − xα)dx =

(αxα+1
α

α+ 1
− xα+1

α+ 1

)
=

α− 1

α+ 1
.

Example 4.4.2. Find the area A of the region bounded by the curve y = sin x, x ∈ [0, 2π] and
the x-axis.

Solution. A =
∫ 2π

0
| sinx|dx =

∫ π

0
sinxdx+|

∫ 2π

π
sinxdx| = −(cosπ−cos 0)+|−(cos 2π−cosπ)| =

2 + | − 2| = 4.
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Example 4.4.3. Find the area A of the region bounded by the parabola f(x) = 2 − x2 and the
line g(x) = −x.

Solution. Notice that the curves intersect at the points (−1, 1) and (2,−2) by solving 2−x2 = −x.

A =

∫ 2

−1

[f(x)− g(x)]dx =

∫ 2

−1

(2− x2 + x)dx = · · · = 9

2
.

Figure 4.1: Area of region bounded by f and g

Example 4.4.4. Find the area A of the region bounded by the x-axis and f(x) = x2 + x− 6.

Solution. The zeros of f(x) = x2 + x − 6 are (−3, 0) and (2, 0). Since the x axis has equation
y = 0, the desired area can be considered as the area of a region between the two curves y = 0
and f(x) = x2 + x− 6. Thus

A =

∫ 2

3

[0− (x2 + x− 6)]dx =
125

6
.

Figure 4.2: Area below the x-axis

Example 4.4.5. Find the area A of the region bounded by the x-axis, f(x) = x3, a = −3 and
b = 3.
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Solution.

Figure 4.3: Area of region symmetric to the x-axis

From the graph, part of the region falls below the x-axis and part above. Note that∫ 3

−3

x3dx = 0.

This is incorrect. Since the region below the x-axis gives a negative value for the area and the
part above the x-axis gives a positive value for the area, then the area A is

A = |
∫ 0

−3

x3dx|+
∫ 3

0

x3dx = | − 81

4
|+ 81

4
=

81

2
.

Another way of approaching the problem is to realize that the region below the x-axis is symmetric
to the region above the x-axis and therefore

A = 2

∫ 3

0

x3dx or A = 2|
∫ 0

−3

x3dx|.

Summary. The area of a region bounded by two or more curves can be found by integration.
The integrand is g(x)−f(x) when g(x) ≥ f(x) for all x in the interval of integration. The bounds
of integration are usually found by determining the points of intersection of the curves. In some
cases it may be necessary to use more than one integral. If f(x) or (g(x)−f(x)) crosses the x-axis
in [a, b], then more than one integral may be necessary.

4.5 Exercises and Some Solved Problems

1. Evaluate

(i).
∫
cos2 xdx Soln:

∫
cos2 xdx = 1

2

∫
(1 + cos 2x)dx = x

2
+ 1

4
sin 2x+ c.
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(ii).
∫
sin4 xdx

Soln:
∫
sin4 xdx = 1

4

∫
(1− cos 2x)2dx = 1

4

∫
(1− 2 cos 2x+ cos2 2x)dx = x

4
− 1

4
sin 2x+ 1

8

∫
(1 +

cos 4x)dx = x
4
− 1

4
sin 2x+ x

8
+ 1

32
sin 4x+ c = 3

8
x− 1

4
sin 2x+ 1

32
sin 4x+ c.

(iii). 2 cos(2x3 + 1)dx

(iv).
∫

lnx
x
dx

(v).
∫
x cos xdx

(vi).
∫ ln(lnx)

x
dx

(vii).
∫

dθ
cos θ(1+sin θ)

(viii).
∫ √

a2 − x2 dx

2. Find the area of the plane region bounded by the given curves.

(i). y = x, y = x2

(ii). y = x3, y = x

(iii). y = 1
x
, 2x+ 2y = 5
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